光谱学与光谱分析, 2021, 41 (1): 52, 网络出版: 2021-04-08   

基于光谱及成像技术的种子品质无损速测研究进展 下载: 618次

Progress in Research on Rapid and Non-Destructive Detection of Seed Quality Based on Spectroscopy and Imaging Technology
作者单位
北京农业质量标准与检测技术研究中心, 北京 100097
摘要
种子是农业生产过程的重要生产资料。 种子质量评价、 活力与老化检测、 纯度与真伪鉴别、 分类与溯源研究是种子品质检测中的常见问题。 种子质量主要包含种子含水率、 蛋白含量、 脂肪酸含量、 淀粉含量等, 是种子品质分级的重要指标, 并且关系到种子存储过程的安全问题。 种子活力是种子发芽和出苗率、 幼苗生长的潜势、 植株抗逆能力和生产潜力的总和; 高活力种子具有明显的生长优势和生产潜力。 种子老化是指种子活力的自然衰退, 表现为种子变色、 发芽率低、 生长势差、 作物减产。 种子的纯度与真伪则会影响作物产量和农产品品质; 而种子分类与溯源则是保证种子纯度与鉴别种子真伪的重要方法, 进而为作物产量与产品品质提供保障。 对于种子品质分析, 传统方法通常需要对样品做不可逆的破坏性分析, 且分析时间长、 过程复杂, 难以适应现代农业对种子生产环节的需要。 因此, 开展种子品质无损快速检测技术研究成为当前亟待解决的问题。 近年来, 随着化学计量学的发展和计算机技术的进步, 近红外光谱法以其快速、 无损、 高效等优势, 在农产品、 食品、 农业投入品等的无损快速分析方面得以广泛的应用。 进一步地, 将光谱技术与成像技术相结合, 高光谱成像技术近年来日益兴起, 相比较于传统的光谱技术, 高光谱成像技术在获得待测样品的光谱信息的同时, 还可以获取样品的空间分布信息以及图像特征。 基于近红外光谱及高光谱成像等无损快速检测技术, 从种子质量评价、 活力与老化检测、 纯度与真伪鉴别、 分类与溯源研究四方面对近年来关于种子品质无损快速检测文献进行综述。 在分析不同检测技术特点的基础上, 分别就上述种子品质检测方面的问题加以整理。 进而对种子品质无损快速检测的技术特点进行了总结与展望。
Abstract
Seed is an important means of production in the process of agricultural production. The quality evaluation, vigor and aging detection, purity and authenticity identification, classification and traceability are common problems in seed quality detection. Seed quality mainly includes the content of moisture, protein, fatty acid, starch, and so forth, which is the important indices of seed quality classification. Moreover, seed quality is related to the safety of storage. Seed vigor is the sum of seed germination and emergence rate, seedling growth potential, plant stress resistance and production potential. High vigor seeds are of obvious growth advantage and production potential. Seed aging refers to the natural decline of seed vigor, which is manifested by seed discoloration, low germination rate, poor growth potential and crop yield reduction. The purity and authenticity of seeds will affect crop yield and agricultural product quality. Seed classification and traceability is an important method to ensure the purity and identify the authenticity of seeds, by which, crop yield and product quality will be guaranteed. For seed quality analysis, it usually need to do irreversible destructive analysis on samples according to the traditional methods, which is time-consuming with complex procedures. It is obvious that traditional methods are difficult to meet the needs of modern agriculture for seed production. Therefore, it is an urgent problem to carry out the research on non-destructive and rapid detection technology of seed quality. In recent years, with the development of chemometrics and the progress of computer technology, near-infrared spectroscopy, with the advantages of fast, non-destructive and high efficiency, has been widely applied in the non-destructive and rapid analysis of agricultural products, food, agricultural inputs, and so on. In addition, combined with spectral and imaging technology, hyperspectral imaging technology is rising in recent years. Compared with the traditional spectral technology, hyperspectral imaging technology can acquire not only the spectral information of the sample but also the spatial distribution information and image characteristics of it. In this paper, based on the near-infrared spectroscopy and hyperspectral imaging technology, the literature of seed quality non-destructive detection from the aspects of seed quality evaluation, vigor and aging detection, purity and authenticity identification, classification and traceability research were reviewed. Based on the analysis of the characteristics of different detection technologies, the problems of seed quality detection are sorted out, respectively. Furthermore, the technical characteristics of non-destructive and rapid detection of seed quality are summarized and prospected.

王冬, 王坤, 吴静珠, 韩平. 基于光谱及成像技术的种子品质无损速测研究进展[J]. 光谱学与光谱分析, 2021, 41(1): 52. Dong WANG, Kun WANG, Jing-zhu WU, Ping HAN. Progress in Research on Rapid and Non-Destructive Detection of Seed Quality Based on Spectroscopy and Imaging Technology[J]. Spectroscopy and Spectral Analysis, 2021, 41(1): 52.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!