光学学报, 2021, 41 (8): 0823014, 网络出版: 2021-04-10   

微腔光频梳研究进展 下载: 4159次特邀综述

Research Progress of Microresonator-Based Optical Frequency Combs
作者单位
1 华中科技大学武汉光电国家研究中心&光学与电子信息学院, 湖北 武汉 430074;
2 丹麦技术大学光电子学院, 丹麦 灵比 2800
摘要
光频梳由一系列离散且等距分布的相干激光组成,可作为高精度光学频率标尺,对时间和频率进行精确测量。微腔产生的光频梳具有小尺寸、低功耗、可单片集成等优势,成为近年来的研究热点。孤子的出现极大提升了微腔光频梳的相干性,其产生过程包含着丰富的非线性物理动态,且在光钟、超快测量、相干通信等多个领域具有很好的应用前景。回顾了微腔光频梳的研究进展,全面综述了微腔光频梳的理论模型、产生方法、物理机理及表征、应用,并对其未来发展趋势进行了分析和展望。孤子微腔光频梳有望作为下一代集成光源,为各个领域带来革命性发展。
Abstract
Optical frequency combs are composed of a series of discrete and equidistant coherent lasers. Optical frequency combs can be used as a high-precision optical frequency scale for accurate measurement of time and frequency. In recent years, microcavity-generated optical frequency combs have attracted significant attention due to their compact footprint, low power consumption, and monolithic integration. The emergence of solitons greatly improves the coherence of microcavity optical frequency combs that are characterized by rich nonlinear physical dynamics and have good application prospects in optical clocks, ultrafast measurements, coherent communication, and other fields. In this article, recent progress of microcavity optical frequency combs is reviewed. Specifically, the theoretical models, generation methods, physical mechanisms, characterizations, and applications of microcavity optical frequency combs are considered. Future trends and perspectives are also discussed. Soliton microcavity optical frequency combs have been considered outstanding candidates in the exploration of next generation optical sources and are expected to lead to revolutionary developments in various fields.

张新亮, 赵延菁. 微腔光频梳研究进展[J]. 光学学报, 2021, 41(8): 0823014. Xinliang Zhang, Yanjing Zhao. Research Progress of Microresonator-Based Optical Frequency Combs[J]. Acta Optica Sinica, 2021, 41(8): 0823014.

本文已被 13 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!