无机材料学报, 2020, 35 (12): 1349, 网络出版: 2021-03-10  

WO3纳米花的热处理晶格调控及WO3/CdS/α-S异质结的构筑 下载: 3562次

Lattice Control of WO3 Nanoflowers by Heat Treatment and Construction of WO3/CdS/α-S Heterojuntion
林海 1苏玮韬 1朱玉 1彭湃 1冯苗 1,2,*于岩 1,2,*
作者单位
1 福州大学 1. 材料科学与工程学院
2 生态环境材料先进技术福建省高等学校重点实验室, 福州 350108
摘要
为研究热处理过程与异质结构筑对WO3的光电化学效应的影响机制, 采用低温溶剂热法制备纳米花状WO3, 通过热处理精确调控WO3纳米花的活性晶面、晶粒尺寸及结晶度。进一步借助循环化学浴法, 构筑WO3/CdS/α-S异质结, 并研究其光电化学性能与浓度效应。结果表明, (200)晶面是WO3纳米花的主要暴露晶面, 且比例随热处理温度升高而增大。350 ℃热处理的WO3纳米花表现出最高的光响应电流。通过构筑WO3/CdS/α-S梯形异质结, 增强材料在可见光区的吸收, 以牺牲少部分载流子的方式提高整体光生载流子的分离效率, 促进WO3的宏观光电化学效应的提升。
Abstract
In order to study the influence mechanism of heat treatment and heterostructures on the photoelectrochemical effect of WO3, monoclinic WO3 nanoflowers were synthesized by low-temperature solvothermal method. The active crystal fact, grain size and crystallinity of WO3 were controlled by heat treatment. Furthermore, WO3/CdS/α-S heterojunction was obtained by modified chemical bath deposition, and the concentration effect of its photoelectrochemical performance was studied. The results show that the (200) crystal plane with photoelectrochemical activity is the main exposed crystal plane of WO3, and the proportion of the exposed crystal plane increases with the heat treatment temperature increasing. The WO3 nanoflower treated at 350 ℃ showed the highest photoresponse current. By constructing WO3/CdS/α-S heterojunction, the material's absorption in the visible light region is enhanced, and the overall efficiency of photo-generated carrier separation is improved by sacrificing a small amount of carriers, which promotes the macroelectronic chemical effects of WO3.

林海, 苏玮韬, 朱玉, 彭湃, 冯苗, 于岩. WO3纳米花的热处理晶格调控及WO3/CdS/α-S异质结的构筑[J]. 无机材料学报, 2020, 35(12): 1349. hai LIN, Weitao SU, Yu ZHU, Pai PENG, Miao FENG, Yan YU. Lattice Control of WO3 Nanoflowers by Heat Treatment and Construction of WO3/CdS/α-S Heterojuntion[J]. Journal of Inorganic Materials, 2020, 35(12): 1349.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!