无机材料学报, 2021, 36 (1): 9, 网络出版: 2021-01-21  

多孔碳纳米材料构建抗肿瘤药物靶向传递系统的研究进展 下载: 730次

Porous Carbon Nanomaterials Based Tumor Targeting Drug Delivery System: a Review
作者单位
1 河北科技大学 化学与制药工程学院,石家庄 050018
2 南非大学 非洲可持续性能源发展研究所, 约翰内斯堡 1710, 南非
3 河北医科大学第二附属医院 胆胰内镜外科, 石家庄 050000
摘要
抗肿瘤药物靶向传递系统是提高传统化疗药物疗效, 并降低其毒副作用的重要手段。以多孔碳纳米材料为药物载体, 根据肿瘤组织微环境特点, 构建抗肿瘤药物靶向传递系统是实现靶向治疗方案的有效方式。本文围绕基于多孔碳纳米材料的抗肿瘤药物靶向传递系统的构建及应用进行综述, 描述了多孔碳纳米材料适宜载药的设计、合成及功能化修饰; 通过理论与实例相结合的方式, 介绍了提高多孔碳纳米材料载药量和实现联合给药的有效策略; 从内源和外源性敏感刺激的角度, 重点分析了多孔碳纳米材料基于肿瘤微环境构建的靶向传递系统的机制和应用; 阐述了多孔碳纳米材料作为抗肿瘤药物载体面临的生物相容性和生物降解性的问题, 并分析了可能的解决途径; 展望了多孔碳纳米材料在构建肿瘤药物靶向传递系统应用中的前景及发展方向, 为研发靶向、可控的抗肿瘤药物传递系统提供了理论依据和例证支持。
Abstract
Chemotherapy is the main method used for cancer treatment. However, most chemotherapeutic drugs show low selectivity towards tumor cells. When killing tumor cells, chemotherapeutic drugs can also damage normal tissue cells and induce a series of side effects and toxic reactions, such as gastrointestinal reactions, calvities and so on. An effective way to reduce the adverse drug reactions is to construct targeted delivery systems based on the microenvironment properties of tumor tissue. Porous carbon nanomaterials (PCN), with excellent properties such as good structural stability, pores, and easily modified surface, are promising candidate to be used for such strategy. In this paper, the construction and application of the PCN-based targeted antitumor drugs delivery system were reviewed; the structural properties, the design philosophy of PCN suitable for drug loading were summarized; the effective strategies to improve drug loading on PCN for combined drug delivery were discussed both theoretically and experimentally. The mechanism and applications of PCN for tumor microenvironment based targeted delivery system were analyzed from the perspectives of endogenous sensitive stimulations (such as acidity, redox potential and specific enzyme), exogenous sensitive stimulations (such as light and magnetic) and multiple sensitive stimulations (such as double sensitive stimulations, including acidity/redox potential, acidity/magnetic and magnetic/light, and three sensitive stimulation, including acidity/redox potential/light). The biocompatibility and biodegradability of PCN used as anti-tumor drug delivery system was discussed, and the possible solutions were analyzed. The prospects of the application of PCN to be used in tumor drugs were discussed at the end of this review. This review provides theoretical basis and examples towards design and synthesis of porous carbon (PC) materials based anti-tumor drug delivery system, which may help the research and development of targeted and controllable tumor treatment.

程晓昆, 张越, 吕海军, 刘歆颖, 侯森林, 陈爱兵. 多孔碳纳米材料构建抗肿瘤药物靶向传递系统的研究进展[J]. 无机材料学报, 2021, 36(1): 9. Xiaokun CHENG, Yue ZHANG, Haijun Lü, Xinying LIU, Senlin HOU, Aibing CHEN. Porous Carbon Nanomaterials Based Tumor Targeting Drug Delivery System: a Review[J]. Journal of Inorganic Materials, 2021, 36(1): 9.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!