激光与光电子学进展, 2021, 58 (10): 1011011, 网络出版: 2021-05-28  

Correlation Holography with A Single-Pixel Detector: A Review 下载: 1608次特邀综述

Correlation Holography with A Single-Pixel Detector: A Review
作者单位
1 Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
2 Department of Mining Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
3 College of Information Science and Engineering, Fujian Provincial Key Laboratory of Light Propagation and Transformation, Huaqiao University, Xiamen, Fujian 361021, China
摘要
Correlation holography uses incoherent light to reconstruct holograms. This technique reconstructs objects as distributions of two-point coherence function rather than using optical fields, as in conventional holography. The basic principle of correlation holography is derived from the van Cittert--Zernike theorem and relies on the similarity between the optical field and the coherence functions. Experimental implementation of the correlation holography techniques requires a field or intensity interferometer, and fringe analysis and cross-covariance measurement in these interferometers require a conventional camera with array detectors. With the availability of digitally controlled diffractive elements, it is possible to replace the incoherent light source, such as a rotating ground glass, with a digital source loaded with the random patterns in sequence. Such strategies ease the burden on the detector and allow for correlation holography with a single-pixel detector (SPD) to be used. This review paper discusses a close connection between digital holography and correlation holography. The principles of correlation holography with the SPD are reviewed in detail, and the advantages of using digital sources to mimic incoherent illumination in the correlation holography are examined in the context of three-dimensional and complex field imaging.
Abstract
Correlation holography uses incoherent light to reconstruct holograms. This technique reconstructs objects as distributions of two-point coherence function rather than using optical fields, as in conventional holography. The basic principle of correlation holography is derived from the van Cittert--Zernike theorem and relies on the similarity between the optical field and the coherence functions. Experimental implementation of the correlation holography techniques requires a field or intensity interferometer, and fringe analysis and cross-covariance measurement in these interferometers require a conventional camera with array detectors. With the availability of digitally controlled diffractive elements, it is possible to replace the incoherent light source, such as a rotating ground glass, with a digital source loaded with the random patterns in sequence. Such strategies ease the burden on the detector and allow for correlation holography with a single-pixel detector (SPD) to be used. This review paper discusses a close connection between digital holography and correlation holography. The principles of correlation holography with the SPD are reviewed in detail, and the advantages of using digital sources to mimic incoherent illumination in the correlation holography are examined in the context of three-dimensional and complex field imaging.

Tushar Sarkar, Aditya Chandra Mandal, Chen Ziyang, Pu Jixiong, Rakesh Kumar Singh. Correlation Holography with A Single-Pixel Detector: A Review[J]. 激光与光电子学进展, 2021, 58(10): 1011011. Sarkar Tushar, Chandra Mandal Aditya, Ziyang Chen, Jixiong Pu, Kumar Singh Rakesh. Correlation Holography with A Single-Pixel Detector: A Review[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011011.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!