激光与光电子学进展, 2021, 58 (3): 0301002, 网络出版: 2021-03-12  

激光掩星探测大气温压反演方法的仿真分析 下载: 588次

Simulation Analysis of Inversion Method of Atmospheric Temperature and Pressure for Laser Occultation
作者单位
1 中国科学院上海技术物理研究所空间主动光电技术重点实验室,上海 200083
2 中国科学院大学,北京 100049
3 中国科学院大气物理研究所中层大气和全球环境探测重点实验室,北京 100029
摘要
针对激光掩星探测对流层中上层到平流层下层高度范围内大气温度和压强的反演方法,进行了研究和仿真分析。选择对温度不敏感而对压强敏感的吸收线,利用吸收系数与吸收截面和压强的关系,通过迭代方式求解得到压强。选择弱吸收峰附近的吸收线,利用吸收系数与压强和温度的关系,根据反演得到的压强值通过迭代方式求解得到温度。为减小大气中其他气体吸收以及大气散射等消光因素对反演结果的影响,仿真过程采用差分波长的方法,在氧气A吸收带内,选取合适的吸收线,利用激光掩星差分透过率数据由Abel积分反变换反演得到各个激光轨迹切点高度处的差分吸收系数廓线,然后利用差分吸收系数反演各个切点高度处的压强和温度。仿真结果显示:压强反演误差主要受差分吸收系数反演误差的影响,随高度下降呈不断增大的趋势,最大误差约为6%;根据反演得到的压强值对温度进行反演,温度反演误差主要受压强和差分吸收系数反演误差的影响;两种影响部分抵消,最大温度反演误差在5 km高度附近约为1.5 K。建立误差模型进行分析,对反演误差中出现的一些变化趋势和影响因素进行解释。在去除差分吸收系数反演误差的条件下,对压强和温度进行1次循环求解,得到压强最大反演误差约为0.3%,温度最大反演误差约为1 K,将该条件下温度和压强的反演误差与有差分吸收系数反演误差时的反演误差进行对比,证实了减小差分吸收系数反演误差的重要性。
Abstract
The inversion method of temperature and pressure from the upper and middle troposphere to the lower stratosphere is studied and simulated. An absorption line is selected, which is not sensitive to temperature but sensitive to pressure, and the relationship among the absorption cross section, pressure and the absorption coefficient is used to determine the pressure by using the iterative method. An absorption line is selected near the weak absorption peak and the relationship among the absorption coefficient, pressure and temperature is used according to the retrieved pressure value to determine the temperature by using the iterative method. In order to reduce the influence of other absorption and scattering factors on the inversion results, the simulation process adopts the method of differential wavelength. In the oxygen absorption band, the appropriate absorption line is selected, and the profile of the differential absorption coefficient at the tangent altitude of each laser track is obtained by retrieving the simulated data of the laser occultation differential transmittance from the Abel integral inverse transformation, and then the pressure and temperature at each tangent altitude are retrieved using the differential absorption coefficient. The simulation results show that the inversion error of pressure is primarily affected by the inversion error of the differential absorption coefficient, which increases with altitude decreasing, and the maximum error is approximately 6%; the inversion error of temperature is affected at the same time by the inversion error of pressure and the differential absorption coefficient; the two influences are partially offset, and the maximum error is 1.5 K near an altitude of 5 km. Through analysis of the error model, some change trends and influence factors in the inversion error are explained. Under the condition of eliminating the inversion error of the differential absorption coefficient, the pressure and temperature are solved once in a cycle, the maximum inversion error of pressure is approximately 0.3%, and the temperature is approximately 1 K. The comparison between this inversion error and the inversion error of the differential absorption coefficient highlights the importance of reducing the latter.

李虎, 王建宇, 洪光烈, 王一楠. 激光掩星探测大气温压反演方法的仿真分析[J]. 激光与光电子学进展, 2021, 58(3): 0301002. Li Hu, Wang Jianyu, Hong Guanglie, Wang Yinan. Simulation Analysis of Inversion Method of Atmospheric Temperature and Pressure for Laser Occultation[J]. Laser & Optoelectronics Progress, 2021, 58(3): 0301002.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!