Photonics Research, 2021, 9 (4): 0400B119, Published Online: Apr. 6, 2021   

Delay-weight plasticity-based supervised learning in optical spiking neural networks

Author Affiliations
1 State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an 710071, China
2 State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi’an 710071, China
Abstract

We propose a modified supervised learning algorithm for optical spiking neural networks, which introduces synaptic time-delay plasticity on the basis of traditional weight training. Delay learning is combined with the remote supervised method that is incorporated with photonic spike-timing-dependent plasticity. A spike sequence learning task implemented via the proposed algorithm is found to have better performance than via the traditional weight-based method. Moreover, the proposed algorithm is also applied to two benchmark data sets for classification. In a simple network structure with only a few optical neurons, the classification accuracy based on the delay-weight learning algorithm is significantly improved compared with weight-based learning. The introduction of delay adjusting improves the learning efficiency and performance of the algorithm, which is helpful for photonic neuromorphic computing and is also important specifically for understanding information processing in the biological brain.

Yanan Han, Shuiying Xiang, Zhenxing Ren, Chentao Fu, Aijun Wen, Yue Hao. Delay-weight plasticity-based supervised learning in optical spiking neural networks[J]. Photonics Research, 2021, 9(4): 0400B119.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!