首页 > 论文 > 半导体光电 > 35卷 > 3期(pp:434-439)

Ag-N共掺杂ZnO电子结构的理论研究

Study on Electronic Structure of Ag-N Co-doped ZnO

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用基于DFT理论的第一性原理方法研究了Ag-N共掺杂纤锌矿ZnO的晶格结构和电子结构, 计算了包括共掺杂体系的晶格常数、杂质形成能和电子态密度等性质。研究结果显示, 共掺改善了杂质原子对体相晶格结构的扰动, 提高了掺杂的稳定性。此外, 电子结构的计算表明共掺形成的受主能级较单掺时更浅, 且空穴态的局域性降低, 从而改善了p型ZnO的传导特性, 表明受主共掺可能是一种比较有潜力的p型ZnO掺杂方式。计算与实验结果符合, 为受主共掺形成p型ZnO的机理提供了理论支持。

Abstract

The crystal and electronic structure, involving the crystal lattice, impurity formation energy, as well as density of states, of Ag-N codoped wurtzite ZnO were simulated and then calculated by using the first-principles based on the density functional theory (DFT),. The results show that codoping minimizes the changes of lattice constants resulted form the impurity atoms and improved the stability of the dopant. Besides, Ag-N codoping can form a shallower acceptor level and higher acceptor densities. Furthermore, the nonlocalization of hole carriers is enhanced, the conductivity characters of the p-type ZnO is therefore improved, indicating that the dual-acceptor codoping may be a promising way for generating p-type ZnO. The calculations compare well with the experimental results, which thus provide theoretical support to the formation mechanism of dual-acceptor induced p-type ZnO.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O472.4

所属栏目:材料、结构及工艺

基金项目:国家自然科学基金项目(11304159,61106009,60778007).

收稿日期:2013-09-03

修改稿日期:--

网络出版日期:--

作者单位    点击查看

谌静:南京邮电大学 电子科学与工程学院, 南京 210023
徐荣青:南京邮电大学 电子科学与工程学院, 南京 210023
陶志阔:南京邮电大学 电子科学与工程学院, 南京 210023
邓贝:香港城市大学 物理与材料科学系, 香港 999077

联系人作者:谌静(jchen@njupt.edu.cn)

备注:谌静(1984-), 男, 江西高安人, 博士, 讲师, 研究方向为半导体物理与器件、表面等离激元和亚波长光学。

【1】Kang S H,Hwang D K, Park S J. Low-resistance and highly transparent Ni/indium-tin oxide ohmic contacts to phosphorous-doped p-type ZnO[J]. Appl. Phys. Lett., 2005, 86(21): 211902-211902-3.

【2】Deng B,Guo Z, Sun H. Theoretical study of Fe-doped p-type ZnO[J]. Appl. Phys. Lett., 2010, 96(17): 172106-172106-3.

【3】Deng B,Sun H Q, Guo Z Y, et al. Theoretical analysis on the improvement of p-type ZnO by B-N codoping[J]. Acta Phys. Sinica, 2010, 2: 520-526.

【4】Yamamoto T,Katayama-Yoshida H. Solution using a codoping method to unipolarity for the fabrication of p-type ZnO[J]. Japanese J. Appl. Phys., 1999, 38(2B): L166.

【5】Sun H Q,Ding S F, Wang Y T, et al. Structural, energetical and electronic properties of CdO and CdxZn1-xO compounds[J]. Acta Phys.-Chim. Sinica, 2008, 24(7): 1233-1238.

【6】Chen L L,Lu J G, Ye Z Z, et al. p-type behavior in In-N codoped ZnO thin films[J]. Appl. Phys. Lett., 2005, 87(25): 252106-252106-3.

【7】Bian J M,Li X M, Gao X D, et al. Deposition and electrical properties of N-In codoped p-type ZnO films by ultrasonic spray pyrolysis[J]. Appl. Phys. Lett., 2004, 84(4): 541-543.

【8】Ye H B,Kong J F, Shen W Z, et al. Origins of shallow level and hole mobility in codoped p-type ZnO thin films[J]. Appl. Phys. Lett., 2007, 90(10): 102115-102115-3.

【9】Tsukazaki A,Saito H, Tamura K, et al. Systematic examination of carrier polarity in composition spread ZnO thin films codoped with Ga and N[J]. Appl. Phys. Lett., 2002, 81(2): 235-237.

【10】Nakahara K,Takasu H, Fons P, et al. Interactions between gallium and nitrogen dopants in ZnO films grown by radical-source molecular-beam epitaxy[J]. Appl. Phys. Lett., 2001, 79(25): 4139-4141.

【11】Sanmyo M,Tomita Y, Kobayashi K. Preparation of p-type ZnO films by doping of Be-N bonds[J]. Chem. of Mater., 2003, 15(4): 819-821.

【12】Li J B,Wei S H, Li S S, et al. Design of shallow acceptors in ZnO: First-principles band-structure calculations[J]. Phys. Rev. B, 2006, 74(8): 081201-081204.

【13】Lu J G,Zhang Y Z, Ye Z Z, et al. Low-resistivity, stable p-type ZnO thin films realized using a Li-N dual-acceptor doping method[J]. Appl. Phys. Lett., 2006, 88(22): 222114-222114-3.

【14】Kanai Y.Admittance spectroscopy of ZnO crystals containing Ag[J]. Japanese J. Appl. Phys., 1991, 30(9R): 2021-2022.

【15】Kang H S,Ahn B D, Kim J H, et al. Structural, electrical, and optical properties of p-type ZnO thin films with Ag dopant[J]. Appl. Phys. Lett.,2006, 88(20): 202108-202108-3.

【16】Wang B,Zhao Y, Min J H, et al. Ag-N dual-accept doping for the fabrication of p-type ZnO[J]. Appl. Phys. A, 2009, 94(4): 715-718.

【17】Huang L M,Rosa A L, Ahuja R. Ferromagnetism in Cu-doped ZnO from first-principles theory[J]. Phys. Rev. B, 2006, 74(7): 075206-075211.

【18】Paudel T R,Lambrecht W R L. First-principles calculation of the O vacancy in ZnO: A self-consistent gap-corrected approach[J]. Phys. Rev. B, 2008, 77(20): 205202-205210.

【19】Wang Q,Sun Q, Jena P, et al. First-principles study of magnetic properties in V-doped ZnO[J]. Appl. Phys. Lett., 2007, 91(6): 063116-063116-3.

【20】Born M,Huang K. Dynamical theory of crystal lattices[M]. Oxford: Clarendon Press, 1954.

【21】Hartree D R.The wave mechanics of an atom with a non-coulomb central field. part I. theory and methods[J]. Cambridge Philosophical Society, 1928, 24(01): 89-110.

【22】Fock V. Z.Physik[J] 1930, 61: 126-130.

【23】Hohenberg P,Kohn W. Inhomogeneous electron gas[J]. Phys. Rev., 1964, 136(3B): 864-871.

【24】Kohn W,Sham L J. Self-consistent equations including exchange and correlation effects[J]. Phys. Rev., 1965, 140(4A): A1133-A1138.

【25】Perdew J P,Wang Y. Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation[J]. Phys. Rev. B, 1986, 33(12): 8800-8802.

【26】Perdew J P,Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996, 77(18): 3865-3868.

【27】Vanderbilt D.Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Phys. Rev. B, 1990, 41(11): 7892-7895.

【28】Segall M D,Lindan P J D, Probert M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. J. Phys.: Condensed Matter, 2002, 14(11): 2717-2744.

【29】Decremps F,Datchi F, Saitta A M, et al. Local structure of condensed zinc oxide[J]. Phys. Rev. B, 2003, 68(10): 104101-104110.

【30】Jaffe E,Snydern J A, Lin Z, et al. LDA and GGA calculations for high-pressure phase transitions in ZnO and MgO[J], Phys. Rev. B, 2000, 62(3): 1660-1665.

【31】Erhart P,Albe K, Klein A. First-principles study of intrinsic point defects in ZnO: Role of band structure, volume relaxation, and finite-size effects[J]. Phys. Rev. B, 2006, 73(20): 205203-205211.

【32】Wei S H,Zunger A. Role of metal d states in Ⅱ-Ⅵ semiconductors[J]. Phys. Rev. B, 1988, 37(15): 8958-8981.

【33】Schroer P,Krüger P, Pollmann J. First-principles calculation of the electronic structure of the wurtzite semiconductors ZnO and ZnS[J]. Phys. Rev. B, 1993, 47(12): 6971-6980.

【34】Vogel D,Krüger P, Pollmann J. Ab initio electronic-structure calculations for Ⅱ-Ⅵ semiconductors using self-interaction-corrected pseudopotentials[J]. Phys. Rev. B, 1995, 52(20): R14316-R14319.

【35】Cui X Y,Medvedeva J E, Delley B, et al. Role of embedded clustering in dilute magnetic semiconductors: Cr doped GaN[J]. Phys. Rev. Lett., 2005, 95(25): 256404-256407.

【36】Barnes T M,Olson K, Wolden C A. On the formation and stability of p-type conductivity in nitrogen-doped zinc oxide[J]. Appl. Phys. Lett., 2005, 86(11): 112112-112114.

【37】Zuo C Y,Wen J, Bai Y L. First-principles investigation of N-Ag co-doping effect on electronic properties in p-type ZnO[J]. Chinese Phys. B, 2010, 19(4): 047101-047104.

引用该论文

CHEN Jing,XU Rongqing,TAO Zhikuo,DENG Bei. Study on Electronic Structure of Ag-N Co-doped ZnO[J]. Semiconductor Optoelectronics, 2014, 35(3): 434-439

谌静,徐荣青,陶志阔,邓贝. Ag-N共掺杂ZnO电子结构的理论研究[J]. 半导体光电, 2014, 35(3): 434-439

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF