首页 > 论文 > 光电工程 > 41卷 > 5期(pp:28-33)

基于计算机视觉与 SVM的水质异常监测方法

Anomaly Monitoring Method of Water Quality Based on Computer Vision and Support Vector Machine

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对水质异常监测问题, 本文提出了一种基于计算机视觉技术和支持向量机相结合的生物式水质异常监测方法。首先通过计算机视觉获取可以反映水质状况的鱼类行为运动特征参数, 对其进行预处理;然后建立样本集并获得基于 SVM的水质异常监测模型;最后利用模型对未知水质下的鱼类行为特征参数分析评价, 间接监测水质异常状况。鉴于支持向量机核函数类型和参数优化对模型优劣有重大影响, 本文对不同类型的核函数进行实验对比, 其次分别采用粒子群优化算法 (PSO)、遗传算法 (GA)以及网格搜索法(Grid Search)对参数进行优化选择。实验结果表明该方法可以快速有效的进行水质异常监测。

Abstract

Aiming at the problem of water quality anomaly monitoring, a bio-monitoring method based on computer vision and support vector machine is proposed. First, fish behavior movement information is collected by computer vision. Then, establishing training sample set is used for obtaining water quality anomaly monitoring model. Finally, the model is utilized to analyze the fish data of unknown water quality. Kernel function type and parameter optimization have a significant impact on the model. The different types of kernel function experimental results are compared to choose the best kernel, and then Particle Swarm Optimization (PSO) algorithm and Genetic Algorithm (GA) and the Grid Search method (Grid Search) are used to optimize parameter. The experimental results show that the method can monitor the water quality quickly and efficiently.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TV213.4

DOI:10.3969/j.issn.1003-501x.2014.05.005

所属栏目:光电测量与检测

基金项目:河北省自然科学青年基金项目 (F2012203031);河北省高等学校科学技术研究青年基金项目 (2011137);河北省专家出国培训项目

收稿日期:2013-11-08

修改稿日期:2013-12-24

网络出版日期:--

作者单位    点击查看

程淑红:燕山大学电气工程学院, 河北秦皇岛 066004
刘洁:燕山大学电气工程学院, 河北秦皇岛 066004
朱丹丹:燕山大学电气工程学院, 河北秦皇岛 066004

联系人作者:程淑红(shhcheng@ysu.edu.cn)

备注:程淑红(1978-), 女(汉族), 河北秦皇岛人。副教授, 主要研究工作是视觉检测。

【1】Vasil Simeonov, Pavlina Simeonova, Stefan Tsakovski. Lake Water Monitoring Data Assessment by Multivariate Statistics [J]. Scientific Research(S1992-2248), 2010, 2:353-361.

【2】Am Jang, Zhiwei Zou, Kang Kug Lee, et al. State-of-the-art lab chip sensors for environmental water monitoring [J]. Measurement Science and Technology(S0957-0233), 2011, 22(3):251-259.

【3】Kim C M, Shin M W, Jeong S M, et al. Real-time motion generating method for artifical fish [J]. Computer Science and Network Security(S1738-7906), 2007, 10(7):52-61.

【4】Kittiwann Nimkerdphol, Masahiro Nakagawa. Effect of sodium hypochlorite on zebrafish swimming behavior estimated by fractal dimension analysis [J]. Journal of Bioscience and Bioengineering(S1389-1723), 2008, 105(5):486–492.

【5】Heng Maa, Tsueng-Fang Tsaib, Chia-Cheng Liuc. Real-time monitoring of water quality using temporal trajectory of live fish [J]. Expert Systems with Applications(S0957-4174), 2010, 37(7):5158-5171.

【6】陈久军, 肖刚, 应晓芳, 等. 鱼体尾频运动模型研究 [J].中国图象图形学报, 2009, 14(10):2177-2180. CHEN Jiujun, XIAO Gang, YING Xiaofang, et al. Fish activity model based on tail swing frequency [J]. Journal of Image and Graphics, 2009, 14(10):2177-2180.

【7】胡江龙, 方景龙, 王大全. 多目标跟踪算法在水质监测中的应用 [J].机电工程, 2012, 29(5):613-615. HU Jianglong, FANG Jinglong, WANG Daquan. Water quality monitoring using multi-object tracking algorithm [J]. Journal of Mechanical & Electrical Engineering, 2012, 29(5):613-615.

【8】程淑红, 蔡菁, 胡春海. 基于视频算法的鱼类运动跟踪研究 [J].光电工程, 2011, 38(2):14-18.CHENG Shuhong, CAI Jing, HU Chunhai. Fish motion tracking research based on video algorithm [J]. Opto-Electronic Engineering, 2011, 38(2):14-18.

【9】Carlos Serra-Toro, Ra′ul Montoliu, Javier Traver V, et al. Assessing water quality by video monitoring fish swimming behavior [C]// International Conference on Pattern Recognition, Istanbul, Aug 23-26, 2010, 113:428-431.

【10】LAI Chengliang, CHIU Chienlun. Using image processing technology for water quality monitoring system [C]// International Conference on Machine Learning and Cybernetics, Guilin, China, July 10-13, 2011:1856-1861.

【11】金章赞, 肖刚, 陈久军, 等. 基于视觉感知与 V-detector的水质异常检测方法 [J].信息与控制, 2011, 40(1):130-136.JIN Zhangzan, XIAO Gang, CHEN Jiujun, et al. Anomaly detection of water quality based on visual perception and V-detector [J]. Information and Control, 2011, 40(1):130-136.

引用该论文

CHENG Shuhong,LIU Jie,ZHU Dandan. Anomaly Monitoring Method of Water Quality Based on Computer Vision and Support Vector Machine[J]. Opto-Electronic Engineering, 2014, 41(5): 28-33

程淑红,刘洁,朱丹丹. 基于计算机视觉与 SVM的水质异常监测方法[J]. 光电工程, 2014, 41(5): 28-33

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF