首页 > 论文 > 光学学报 > 34卷 > 8期(pp:0815001--1)

移动视觉测量中基于空间交会的匹配方法

Correspondence Method Based on Spatial Intersection in Portable Visual Metrology

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

移动视觉测量中大量非编码点粘贴在被测物表面。由于图像点在不同站位图像中形状相似,因此无法提供足够多的信息来对其进行分类识别,匹配不同图像间的非编码点是移动视觉测量中的一项重要任务。大量研究证明,极线匹配方法是实现图像点匹配的有效方法。然而移动视觉测量的相机是未经过标定的,在利用极线匹配方法时,图像畸变会使基本矩阵求解精度较低,从而导致大量误匹配情况出现。为了解决该问题,提出一种基于空间交会的非编码点匹配方法。该方法通过不同图像间编码点的自动匹配,结合平差优化算法初步获取各站位的内外参数。然后利用这些参数将二维图像点重投影成对应的三维空间直线,在空间中利用直线间的交会关系确定图像匹配点。大量实验证明,该方法可以比极线匹配方法寻找更多的匹配点,更适合用于移动视觉测量。

Abstract

In portable visual metrology, a large number of un-coding targets are stuck on the surface of the measured object. Since the shapes of the image points are similar in different station images, there is not sufficient information to classify and identify the image points. Therefore, matching of un-coding targets between multiple images is an important task in portable visual metrology. Numerous researches prove that epipolar line matching method is an effective way to do the match. However, the camera is not calibrated before the measurement in portable visual metrology. The solving accuracy of fundamental matrix is low due to image distortion, which results in great amount of mismatches. To solve this problem, an un-coding points matching method based on spatial intersection is proposed. With the automated match of coding targets between multiple images, internal and external parameters of stations are obtained combining with bundle adjustment optimization. Utilizing these parameters, two-dimensional image points are re-projected into corresponding three-dimensional spatial lines and the matching image points can be determined with the intersecting relationship of lines on space. Multiple experiments indicate that this method can find more match points than epipolar line matching method and is more suitable for portable visual metrology.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TH741

DOI:10.3788/aos201434.0815001

所属栏目:机器视觉

基金项目:国家863计划(2012AA041205)、国家自然科学基金(51305297)

收稿日期:2014-03-20

修改稿日期:2014-04-24

网络出版日期:--

作者单位    点击查看

隆昌宇:天津大学精密测试技术及仪器国家重点实验室, 天津 300072
邾继贵:天津大学精密测试技术及仪器国家重点实验室, 天津 300072
郭寅:天津大学精密测试技术及仪器国家重点实验室, 天津 300072
林嘉睿:天津大学精密测试技术及仪器国家重点实验室, 天津 300072

联系人作者:隆昌宇(cylong@tju.edu.cn)

备注:隆昌宇(1988—),男,博士研究生,主要从事移动视觉测量方面的研究。

【1】C Y Long, J G Zhu. Study on global control network precision positioning method in visual shape measurement [C]. SPIE, 2013, 8908: 89081I.

【2】X Armangué, J Salvi. Overall view regarding fundamental matrix estimation [J]. Image Vision Comput, 2003, 21(2): 205-220.

【3】R M Steele, C Jaynes. Overconstrained Linear Estimation of Radial Distortion and Multi-View Geometry [M]. Berlin Heidelbero: Springer, 2006. 253-264.

【4】P Chen. Why not use the Levenberg-Marquardt method for fundamental matrix estimation [J]. IET Computer Vision, 2010, 4(4): 286-294.

【5】C Gao, Y Song, P Jia. A robust feature matching approach for photography originality test [J]. J Math Imaging Vision, 2012, 44(2): 185-194.

【6】Z Zhang. Determining the epipolar geometry and its uncertainty: a review [J]. Int J Comput Vision, 1998, 27(2): 161-195.

【7】C S Fraser, S Cronk. A hybrid measurement approach for close-range photogrammetry [J]. ISPRS J Photogramm, 2009, 64(3): 328-333.

【8】Zhu Jigui, Yu Zhijing. The Principle of Vision Metrology [M]. Beijing: China Machine Press, 2012.
邾继贵, 于之靖. 视觉测量原理与方法 [M]. 北京: 机械工业出版社, 2012.

【9】Guo Yin, Liu Changjie, Zhu Jigui, et al.. Measurement system for dynamic envelope curve of high-speed train [J]. Chinese J Lasers, 2013, 40(2): 0208002.
郭寅, 刘常杰, 邾继贵, 等. 高速列车动态包络线测量系统[J]. 中国激光, 2013, 40(2): 0208002.

【10】Zhu Jigui, Guo Lei, Ye Shenghua. Principle and implementation method of three-dimensional precision positioning in large field working space [J]. Acta Optica Sinica, 2009, 29(7): 1872-1876.
邾继贵, 郭磊, 叶升华. 现场条件下大空间三维精密定位原理与方法[J]. 光学学报, 2009, 29(7): 1872-1876.

【11】Liu Changjie, Ma Shuang, Guo Yin, et al.. Study on calibration technology of high-precision flexible coordinate measurement system [J]. Acta Optica Sinica, 2013, 33(10): 1012002.
刘常杰, 马爽, 郭寅, 等. 高精度柔性坐标测量系统及其校准技术研究 [J]. 光学学报, 2013, 33(10): 1012002.

【12】M I Lourakis, A A Argyros. SBA: a software package for generic sparse bundle adjustment [J]. ACM Trans Math Software (TOMS), 2009, 36(2): 2.

【13】C Long, J Zhu. Study on the image processing and recognition algorithm for portable precision visual measurement [J]. Journal of Information and Computational Science, 2014, 11(1): 15-23.

【14】Zhu Jigui, Zou Jian, Lin Jiarui, et al.. Error-compensation algorithm with high-accuracy for photographic image processing [J]. Acta Optica Sinica, 2012, 32(9): 0912004.
邾继贵, 邹剑, 林嘉睿, 等. 摄影测量图像处理的高精度误差补偿法 [J]. 光学学报, 2012, 32(9): 0912004.

【15】Zhang Guangjun. Vision Measurement [M]. Beijing: Science Press, 2008. 33-35.
张广军. 视觉测量 [M]. 北京: 科学出版社, 2008. 33-35.

引用该论文

Long Changyu,Zhu Jigui,Guo Yin,Lin Jiarui. Correspondence Method Based on Spatial Intersection in Portable Visual Metrology[J]. Acta Optica Sinica, 2014, 34(8): 0815001

隆昌宇,邾继贵,郭寅,林嘉睿. 移动视觉测量中基于空间交会的匹配方法[J]. 光学学报, 2014, 34(8): 0815001

被引情况

【1】张致远,刘巍,张洋,逯永康,邸宏图,叶帆,贾振元. 基于非度量校正的大视场图像匹配参数标定法. 光学学报, 2018, 38(8): 815004--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF