首页 > 论文 > 激光与光电子学进展 > 44卷 > 8期(pp:44-51)

自由空间相干光通信技术及发展

Technologies and Recent Progress of Coherent Optical Communications in Free Space

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

对比了相干探测和直接探测,以及自由空间相干光通信和光纤相干通信,对相干自由空间激光通信系统的特点和关键技术进行了讨论,回顾了近年来国外在自由空间相干光通信领域内开展的有关研究计划。最后对相干光通信技术的应用前景进行了展望。

Abstract

The comparison between coherent detection and direction detection, and between free-space optical communication and fiber optical communications are made. The characteristics and key techniques of coherent optical communications in free space are discussed. International progress of space coherent optical communication is reviewed. Finally the application prospect of coherent optical communication technology is given.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN929.13

所属栏目:光纤光学与光通信

基金项目:863计划2007AA01Z298

收稿日期:2007-03-09

修改稿日期:--

网络出版日期:--

作者单位    点击查看

许楠:中国科学院上海光学精密机械研究所, 上海 201800
刘立人:中国科学院上海光学精密机械研究所, 上海 201800
刘德安:中国科学院上海光学精密机械研究所, 上海 201800
孙建锋:中国科学院上海光学精密机械研究所, 上海 201800
栾竹:中国科学院上海光学精密机械研究所, 上海 201800

联系人作者:许楠(xunan@mail.siom.ac.cn)

备注:许楠(1981-),女,上海人,硕士研究生,主要从事空间相干光通信以及激光相干测距方面的研究。

【1】Vincent W. S. Chan. Space coherent optical communication systems-an introduction[J]. IEEE J. Lightw. Technol., 1987, (5): 633~637

【2】Vincent W. S. Chan. Free-Space Optical Communications[J]. J. Lightw. Technol., 2006, 24(12): 4750~4862

【3】Takanori Okoshi. Heterodyne and coherent optical fiber communications: recent progress[J]. IEEE Trans. Microwave Theory Tech. 1982, 30(8): 1138~ 1149

【4】J. Salz. Modulation and detection for coherent lightwave communications[J]. IEEE Communication Magazine, 1986, 24(6):38~ 49

【5】John R. Barry, Edward A. Lee. Performance of coherent optical receivers[J]. Proc. IEEE, 1990, 78(8):1369~1394

【6】Leonid G. Kazovsky. Decision-driven phase-locked loop for optical homodyne receivers: performance analysis and laser linewidth requirements [J]. J. Lightw. Technol., 1985, 3(6): 1238~1247

【7】L. G. Kazovsky. Balanced phase-locked loops for optical homodyne receivers: performance analysis, design considerations, and laser linewidth requirements[J]. J. Lightw. Technol., 1986, 4 (2): 182~195

【8】R. Garreis, Carl Zeiss. 90° optical hybrid for coherent receivers[C]. Proc. SPIE, 1991, 1522: 210~219

【9】Robert Lange, Berry Smutny. Optical inter-satellite linkd based on homodyne BSPK modulation: heritage, status and outlook[C]. Proc. SPIE, 2005, 5712: 1~12

【10】Marcos Reyes, Talavera, S. Chueca. Analysis of the preliminary optical links between ARTEMIS and the optical ground station[C]. Proc. SPIE, 2002, 4821: 33~43

【11】Marcos Reyes, Jose A. Rodriguez, Teodora Viera et al.. Design and performance of the ESA optical ground station[C]. Proc. SPIE, 2002, 4635: 248~261

【12】Toni Tolker Nielsen, Gotthard Oppenhauser. In-orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX[C]. Proc. SPIE, 2002, 4635: 1~15

【13】G. Planche, B. Laurent, J. C. Guillen et al.. SILEX final ground testing and in-flight performance assessment[C]. Proc. SPIE, 1999, 3615: 64~77

【14】Toni Tolker Nielsen, Benoit Demelenne, Eric Desplats. In-orbit test results of the first SILEX terminal[C]. Proc. SPIE, 1999, 3615: 31~42

【15】Benoit Demelenne, Toni Tolker Nielsen, J. C. Guillen. SILEX ground segment control facilities and flight operations[C]. Proc. SPIE, 1999, 3615: 2~10

【16】Gotthard Oppenhauser. SILEX program status: a major milestone is reached[C]. Proc. SPIE, 1997, 2990: 2~9

【17】Bernard Laurent, Gilles Planche. SILEX overview after flight terminals campaign[C]. Proc. SPIE, 1997, 2990: 10~22

【18】Richard R. Craig, Benjamin Li, Benny Chan. Laser qualification for the semiconductor laser intersatellite link experiment (SILEX) program[C]. Proc. SPIE, 1994, 2123: 238~242

【19】A. F. Popescu, B. Furch. Status of the European developments for laser intersatellite communications[C]. Proc. SPIE, 1993, 1866:10~20

【20】Reginald P. Jonas. Optical pupil relay design for SILEX: optimizing wavefront error and transmit/receive beams co-alignment [C]. Proc. SPIE, 1992, 1635: 99~108

【21】U. A. Johann, H. Sontag, K. Pribil et al.. A novel optical fiber based conical scan tracking device[C]. Proc. SPIE, 1991, 1522: 243~251

【22】G. C. Baister, T. Dreischer, E. Rugi Grond. The OPTEL terminal development programme - enabling technologies for future optical crosslink applications [C]. AIAA Space Conference, 2003, 6229: 1~8

【23】T. Dreischer, A. Maerki, T. Weigel et al.. Operating in sub-arc seconds: high precision laser terminals for intersatellite communications [C]. Proc. SPIE, 2002, 4902: 87~98

【24】K. Pribil, Ch. Serbe, B. Wandernoth et al.. SOLACOS YKS: an optical highdatarate communication system for intersatellite link[C]. Proc. SPIE, 1995, 2381: 83~88

【25】K. Pribil, A. J. Fleming. SOLACOS: system implementation[C]. Proc. SPIE, 1995, 2381: 143~150

【26】周宇,石力. SOLACOS: 德国空间光通信系统[J]. 电子科技大学学报, 1998, 27(5): 557~560

【27】Klaus Pribil, Jorg Flemmig. SOLACOS high datarate satellite communication system verification program[C]. Proc. SPIE, 1994, 2210: 39~48

【28】Jorg Flemmig, Klaus Pribil. SOLACOS PAT subsystem implementation [C]. Proc. SPIE, 1994, 2210: 164~172

【29】M. Eineder, H. Runge, E. Boerner et al.. SAR Interferometry with TerraSAR-X[C]. Proc. Fringe 2003 Workshop, Italy, 2003

【30】Isabel Zerfowski. TerraSAR-X-mission [C]. Proc. 5th European Conference on Synthetic Aperture Radar, 2003, 20~25

【31】Robert Lange, Berry Smutny. BPSK laser communication terminals to be verified in space[C]. MILCOM 2004. IEEE, 2004, 1: 441~444

【32】Morio Toyoshima, Shiro Yamakawa, Toshihiko Yamawaki et al.. Ground-to-satellite opticallink tests between Japanese laser communications terminaland European geostationary satellite ARTEMIS[C]. Proc. SPIE, 2004, 5338: 1~15

【33】Don M. Boroson. An overview of Lincoln laboratory development of lasercom technologies for space[C]. Proc. SPIE, 1993, 1866: 30~39

【34】Akio Yamamoto, Toshihiro Hori, Takafumi Shimizu et al.. Japanese first optical inter-orbit communications engineering test satellite (OICETS)[C]. Proc. SPIE, 1994, 2210: 30~38

【35】Keizo Nakagasa, Akio Yamamoto. Performance test result of LUCE (laser utilizing communications equipment) engineering model[C]. Proc. SPIE, 2000, 3932: 68~76

【36】Allen D. Pillsbury. LITE engineering model-II: the flight-qualified subsystems [C]. Proc. SPIE, 1993, 1866: 58~72

【37】Don M. Boroson. LITE engineering model-I: operation and performance of the communications and beam-control subsystems [C]. Proc. SPIE, 1993, 1866: 73~82

【38】Klaus Pribil. Laser communication terminals: a key building block for the new broadband satellite networks[C]. Proc. SPIE, 1998, 3408: 172~177

【39】J. Lewis, P. Gatenby, G. Baister. The optical subsystem of the SOUT. Proc. SPIE, 1994, 2210: 49~60

引用该论文

许楠,刘立人,刘德安,孙建锋,栾竹. Technologies and Recent Progress of Coherent Optical Communications in Free Space[J]. Laser & Optoelectronics Progress, 2007, 44(8): 44-51

许楠,刘立人,刘德安,孙建锋,栾竹. 自由空间相干光通信技术及发展[J]. 激光与光电子学进展, 2007, 44(8): 44-51

被引情况

【1】许楠,刘立人,万玲玉,孙建锋. 空间相干激光通信中目标位置误差的相干探测. 光学学报, 2010, 30(2): 347-351

【2】刘驰,漆云风,周军,杜松涛,何兵,董景星,魏运荣,楼祺洪,王之江. 高功率单频保偏光纤放大器输出特性研究. 光学学报, 2010, 30(3): 692-695

【3】侯培培,周煜,职亚楠,孙建锋,刘立人. 晶体双折射自由空间2×4 90°光学桥接器. 光学学报, 2010, 30(12): 3413-3419

【4】万玲玉,谷巍,王戎丞,马雪梅. 相干光通信中的光学桥接器. 激光与光电子学进展, 2011, 48(1): 10604--1

【5】于刚,谢小平,赵卫,汪伟,段弢. 孔径平均效应对采用相位补偿技术的空间相干光通信系统误码率的影响. 光学学报, 2012, 32(9): 906006--1

【6】孙洋,黄启俊,王豪,何进,常胜. 用于平衡探测器的5Gb/s前置放大器设计. 半导体光电, 2014, 35(6): 1062-1066

【7】江伦,王超,安岩,刘壮,李英超,张立中. 库德式激光通信终端偏振态传输特性分析. 激光与光电子学进展, 2016, 53(11): 110603--1

【8】江伦,王超,安岩,刘壮,李英超,张立中. 潜望式激光通信终端信号光偏振态实时补偿方法. 激光与光电子学进展, 2016, 53(12): 120601--1

【9】代永红,梁赫西,武 强,杨海峰,卢欧欣. 高速空间相干光平衡探测器结构优化. 光学 精密工程, 2017, 25(10): 2736-2743

【10】贺红雨,孙建锋,侯培培,张波,许蒙蒙,劳陈哲. 精跟踪中基于声光偏转器的本振光章动探测角度误差方法. 中国激光, 2018, 45(10): 1006001--1

【11】宋哲,于伟行,宋佳,王妍,田小凡,赵趣,王安鸽. 2×4集成结构90°空间光学桥接器. 激光与光电子学进展, 2018, 55(11): 112302--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF