首页 > 论文 > 光谱学与光谱分析 > 34卷 > 7期(pp:1948-1953)

实测高光谱和HSI影像的区域土壤盐渍化遥感监测研究

Study on the Soil Salinization Monitoring Based on Measured Hyperspectral and HSI Data

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

通过典型研究区不同盐渍化土壤光谱反射率数据的变换和分析, 选择与土壤含盐量响应敏感波段, 建立实测高光谱土壤含盐量反演模型, 以校正HSI影像建立的土壤含盐量反演模型。 结果表明: 实测高光谱土壤含盐量反演模型与HSI影像土壤含盐量反演模型均有较好的精度, 模型判定系数(R2)均高于0.57, 且模型稳定性较好。 校正后的HSI影像土壤含盐量反演模型, 模型判定系数有了较大提高, R2从0.571提升至0.681, 且通过了0.01的显著性水平, 均方根误差(RMSE)值为0.277。 模型能够较好地提高区域尺度条件下土壤盐渍化监测精度, 运用此方法开展盐渍化土壤定量遥感监测是可行的。

Abstract

The present paper selects the Kuqa Oasis as the study area, studies spectrum characteristics of soil salinity, and establishes soil spectrum library. Through transforming and analyzing varying degrees of soil salinization reflectance spectra data in the typical study area, and selecting the most sensitive spectral bands in response to salinization, we established the measured hyperspectral soil salinity monitoring model, and by correcting the soil salinity monitoring model established by HIS image through scale effect conversion improved the model accuracy under the conditions of a regional-scale monitoring of soil salinization. The results show that both measured hyperspectral soil salinity monitoring model and HSI image soil salinity inversion model have good accuracy, model determination coefficient (R2) is higher than 0.57 and the model stability is better. Compared with the corrected HSI image soil salinity inversion model and uncorrected HSI image soil salinity inversion model, the coefficient of determination has been greatly improved, which increased from 0.571 to 0.681, and through the 0.01 significance level, the root mean square error (RMSE) value is 0.277. The correction HIS image soil salinization monitoring model can better improve the model accuracy under the condition of regional scale soil salinization monitoring, and using this method to carry out the soil salinization quantitative remote sensing monitoring is feasible, and also can provide scientific reference for future research.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP70;S156.4

DOI:10.3964/j.issn.1000-0593(2014)07-1948-06

基金项目:国家自然科学基金项目(41261090, 41161063, 41130531, 41001198), 霍英东教育基金项目(121018)和教育部新世纪优秀人才支持计划项目(NCET-12-1075)资助

收稿日期:2013-06-08

修改稿日期:2014-04-18

网络出版日期:--

作者单位    点击查看

雷磊:新疆大学资源与环境科学学院, 新疆 乌鲁木齐 830046绿洲生态教育部重点实验室, 新疆 乌鲁木齐 830046
塔西甫拉提·特依拜:新疆大学资源与环境科学学院, 新疆 乌鲁木齐 830046绿洲生态教育部重点实验室, 新疆 乌鲁木齐 830046
丁建丽:新疆大学资源与环境科学学院, 新疆 乌鲁木齐 830046绿洲生态教育部重点实验室, 新疆 乌鲁木齐 830046
江红南:新疆大学资源与环境科学学院, 新疆 乌鲁木齐 830046绿洲生态教育部重点实验室, 新疆 乌鲁木齐 830046
阿尔达克·克里木:新疆大学资源与环境科学学院, 新疆 乌鲁木齐 830046绿洲生态教育部重点实验室, 新疆 乌鲁木齐 830046

联系人作者:雷磊(lei3218@163.com)

备注:雷磊, 1984年生, 新疆大学资源与环境科学学院硕士研究生

【1】Dehaan R L, TayLor G R. Remote Sensing of Environment, 2002, 80(3): 406.

【2】Mettmicht G I, Zinck J A. Remote Sensingof Environment, 2003, 85(1): 1.

【3】Graciela Metternicht, Alfred Zinck. Remote Sensing of Soil Salinization-Impact on Land Management. CRC Press, 2009. 63.

【4】TAN Jun-li, KANG Yue-hu, JIAO Yan-ping, et al(谭军利, 康跃虎, 焦艳平, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2008, 24(6): 59.

【5】DONG Xin-guang, ZHOU Jin-long, CHEN Yue-bin(董新光, 周金龙, 陈跃滨). Study on Moisture and Salinity Monitoring and Its Application in Arid Inlard Region(干旱内陆区水盐监测与模型研究及其应用). Beijing: Science Press(北京: 科学出版社), 2007. 1.

【6】Farifteh J, Farshad A, George R J. Geoderma, 2006, 130(3-4): 191.

【7】LI Xiao-song, LI Zeng-yuan, GAO Zhi-hai, et al(李晓松, 李增元, 高志海, 等). J. of Desert Research(中国沙漠), 2011, 31(1): 162.

【8】LIU Dong-xing, GONG Wei-guang(刘东兴, 宫伟光). Science of Soil and Water Conservation(中国水土保持科学), 2009, 3(3): 98.

【9】GU Xiao-he, WANG Kun, PAN Yu-chun, et al(顾晓鹤, 王堃, 潘瑜春, 等). Geography and Geo-Information Science(地理与地理信息科学), 2011, 27(6): 69.

【10】YAO Yuan, DING Jian-li, ZHANG Fang, et al(姚远, 丁建丽, 张芳, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2013, 33(6): 1658.

【11】TANG Yan(唐彦). Engineering of Surveying and Mapping(测绘工程), 2010, 19(6): 65.

【12】ZHAO Zhen-liang, TASHPOLAT Tiyip, ZHANG Fei, et al(赵振亮, 塔西甫拉提·特依拜, 张飞, 等). Journal of Natural Disasters(自然灾害学报), 2012, 21(5): 72.

【13】Ben-Dor E, Patin K, Banin A, et al. International Journal of Remote Sensing, 2002, 23(6): 1043.

【14】Lu Ning, Zhang Zhi, Gao Yang. Geoscience and Remote Sensing Symposium, IEEE, 2005, 6: 4520.

【15】Inakwu O A, Odeh·Alex O. Environmental Management, 2008, 42: 265.

引用该论文

LEI Lei,TIYIP Tashpolat,DING Jian-li,JIANG Hong-nan,KELIMU Ardak. Study on the Soil Salinization Monitoring Based on Measured Hyperspectral and HSI Data[J]. Spectroscopy and Spectral Analysis, 2014, 34(7): 1948-1953

雷磊,塔西甫拉提·特依拜,丁建丽,江红南,阿尔达克·克里木. 实测高光谱和HSI影像的区域土壤盐渍化遥感监测研究[J]. 光谱学与光谱分析, 2014, 34(7): 1948-1953

被引情况

【1】张东,塔西甫拉提·特依拜,张飞,阿尔达克·克里木,夏楠. 分数阶微分算法对盐渍土高光谱数据的影响研究. 光学学报, 2016, 36(3): 330002--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF