首页 > 论文 > 量子电子学报 > 31卷 > 4期(pp:419-427)

超构材料的量子光学效应

The quantum optical effects of metamaterial

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

超构材料作为一种新型人工微结构材料,由于它可以提供自然界不存在或者难以实现的特殊性质, 受到了广泛的关注。本研究组基于LC回路模型的量子化方法,研究了超构材料的元激发, 并引入了准粒子的概念。使用双光子干涉的方法,证明了超构材料具有量子特性,并验证了 量子化方法的正确性。基于这套量子化方法,进一步研究了超构材料与活性材料相互作用的问题, 发现这个体系可以产生受激辐射放大的效应。这些结果表明,超构材料不但可以有效地调控经典光, 在量子光学方面也有潜在的应用前景。

Abstract

As a new kind of artificial materials, metamaterials have attracted wide attention, because they can present special properties which not exist naturally or hard be realized. Based on the quantized method of the LC circuit model, our group has studied the elementary excitation in metamaterial and introduced its “quasi-particle”. By using the two-photon inference, the quantum property of metamaterial and the correctness of the quantized method were proved. This quantized method was further used to investigate the interaction between metamaterial and active material, and the amplification by the stimulated emission radiation can be found in this system. These results show that metamaterials not only can steer the light in classical regime but also have a potential application in quantum optics.

广告组4 - 量子光学(超导单光子,符合计数器)
补充资料

中图分类号:O431.2;TB301

DOI:10.3969/j.issn.1007-5461.2014.04.005

基金项目:国家自然科学基金项目(51001059, 11074119), 国家重大科学研究计划(2012CB921501), 国家自然科学基金创新群体项目(11021403)

收稿日期:2014-03-04

修改稿日期:2014-03-11

网络出版日期:--

作者单位    点击查看

王漱明:南京大学固体微结构国家重点实验室,物理学院, 江苏 南京 210093
刘辉:南京大学固体微结构国家重点实验室,物理学院, 江苏 南京 210093
祝世宁:南京大学固体微结构国家重点实验室,物理学院, 江苏 南京 210093

联系人作者:王漱明(wangshuming@nju.edu.cn)

备注:王漱明(1981-), 江苏人,副研究员,主要从事凝聚态光物理方面的研究。

【1】Pendry J B, Holden A J, et al. Magnetism from conductors and enhanced nonlinear phenomena [J]. IEEE Trans. Microwave Theory Tech., 1999, 47: 2075-2084.

【2】Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction [J]. Science, 2001, 292: 77.

【3】Pendry J B. Negative refraction makes a perfect lens [J]. Phys. Rev. Lett., 2000, 85: 3966.

【4】Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields [J]. Science, 2006, 312: 1780.

【5】Lai Y, Ng J, Chen H Y, et al. Illusion optics: The optical transformation of an object into another object [J]. Phys. Rev. Lett., 2009, 102: 253902.

【6】Walser R M. Electromagnetic metamaterials [J]. Proc. SPIE, 2001, 4467: 1-15.

【7】Altewischer E, van Exter M P, Woerdman J P. Plasmon-assisted transmission of entangled photons [J]. Nature, 2002, 418: 304.

【8】Tame M S, McEnery K R, zdemir S K, et al. Quantum plasmonics [J]. Nat. Phys., 2013, 9: 329.

【9】Engheta N. Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials [J]. Science, 2007, 317: 1698.

【10】Liu H, Genov D A, Wu D M, et al. Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies [J]. Phys. Rev. Lett., 2006, 97: 243902.

【11】Hong C K, Ou Z Y, et al. Measurement of subpicosecond time intervals between two photons by interference [J]. Phys. Rev. Lett., 1987, 59: 2044.

【12】Steinberg A M, Kwiat P G, Chiao R Y. Dispersion cancellation in a measurement of the single-photon propagation velocity in glass [J]. Phys. Rev. Lett., 1992, 68: 2421.

【13】Bouwmeester D, Pan J W, Mattle K, et al. Experimental quantum teleportation [J]. Nature, 1997, 390: 575-579.

【14】Knill E, Laflamme R, Milburn G J. A scheme for efficient quantum computation with linear optics [J]. Nature, 2001, 409: 46.

【15】Wang S M, Mu S Y, Zhu C, et al. The two-photon interference mediated by the magnetic resonance in two-dimensional metamaterial [J]. Quantum Information Processing, 2013, 12: 825.

【16】Valentine J, Zhang S, Zentgraf T, et al. Three dimensional optical metamaterial exhibiting negative refractive index [J]. Nature, 2008, 455: 376.

【17】Wang S M, Mu S Y, Zhu C, et al. The Hong-Ou-Mandel interference mediated by the magnetic plasmon waves in a three-dimensional optical metamaterial [J]. Opt. Expr., 2012, 20: 5213.

【18】Wang S M, Li T, Liu H, et al. Magnetic plasmon modes in periodic chains of nanosandwiches [J]. Opt. Expr., 2008, 16: 3560.

【19】Purcell E M. Spontaneous emission probabilities at radio frequencies [J]. Phys. Rev., 1946, 69: 681.

【20】Wang S M, Liu H, Li T, et al. The interaction between quantum dots and coupled magnetic plasmon in coupled metamaterial [J]. Phys. Lett. A, 2012, 376: 1812.

【21】Zhu Z H, Liu H,et al. Optically pumped nanolaser based on two magnetic plasmon resonance modes [J]. Appl. Phys. Lett., 2009, 94: 103106.

【22】Wang S M, Zhu Z H, Cao J X, et al. The gain effect in a magnetic plasmon waveguide [J]. Appl. Phys. Lett., 2010, 96: 113103.

【23】Poddubny A, Iorsh I, Belov P, et al. Hyperbolic metamaterials [J]. Nat. Photon., 2013, 7: 958.

【24】Suchowski H, O’Brien K, Wong Z J, et al. Phase mismatch-free nonlinear propagation in optical zero-index materials [J]. Science, 201, 3342: 1223.

引用该论文

WANG Shu-ming,LIU Hui,ZHU Shi-ning. The quantum optical effects of metamaterial[J]. Chinese Journal of Quantum Electronics, 2014, 31(4): 419-427

王漱明,刘辉,祝世宁. 超构材料的量子光学效应[J]. 量子电子学报, 2014, 31(4): 419-427

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF