中国激光, 2008, 35 (4): 524, 网络出版: 2008-04-21   

飞秒激光与固体靶相互作用中背表面的渡越辐射

Transition Radiation from the Surface in Femtosecond Laser Interaction with Solid Targets
作者单位
1 成都医学院物理教研室, 四川 成都 610083
2 中国工程物理研究院激光聚变研究中心,四川 绵阳 621900
摘要
在飞秒激光与固体靶相互作用中,利用光学CCD相机和光学多道分析仪(OMA),分别在固体薄膜靶背表面法线方向测量了渡越辐射(TR)积分成像图案和渡越辐射光谱。测量结果显示,渡越辐射光斑呈现圆盘状结构,在圆盘中明亮而强的光信号呈局部化分布,并且有分离的光斑出现。该现象表明,超热电子在输运过程中存在成丝效应,引起严重的不稳定性; 渡越辐射光谱在800 nm附近出现了尖峰,是基频波(ω0),并且光谱向红光方向移动; 基频波产生的原因归结于超热电子束在传输过程中产生的微束团而引起的相干渡越辐射(CTR); 光谱红移的原因是由于等离子体临界面的迅速膨胀所致; 渡越辐射光强随靶厚度的增加而减小。
Abstract
For studying transport of hot electrons in solid targets by transition radiation (TR), the image pattern of spatial distribution and spectrum of optical emission were measured at the normal direction from the rear side of targets employing optical charge coupled device (CCD) camera and optical multi-channel spectrometer apparatus (OMA) on the 100 TW femtosecond laser facility. The image pattern of spatial distribution presents a tray-shape and in the tray-shape there is a bright localized signal, which shows filament effect during hot electron transport. The spectrum of optical emission presents a sharp peaks in the wavelength near 800 nm, which is attributed to the one-order harmonic (ω0). The production of one-order harmonic is ascribed to the coherent transition radiation (CTR) generated by microbunches produced in the transporting of hot electron beams. The red shift is caused by the expansion of the critical density surface. With the increase of the laser energy, the peak of the CTR moves further to the long wavelength side. Intensity of transition radiation decreases with the increase of the target thickness.

王光昶, 郑志坚. 飞秒激光与固体靶相互作用中背表面的渡越辐射[J]. 中国激光, 2008, 35(4): 524. Wang Guangchang, Zheng Zhijian. Transition Radiation from the Surface in Femtosecond Laser Interaction with Solid Targets[J]. Chinese Journal of Lasers, 2008, 35(4): 524.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!