首页 > 论文 > 激光与光电子学进展 > 51卷 > 9期(pp:91603--1)

(111)应变对立方相Ca2P0.25Si0.750.75能带结构及光学性质的影响

Effect of Strain on (111) Surface on Energy Band Structure and Optical properties of Cubic Ca2P0.25Si0.750.75

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用第一性原理贋势平面波方法对(111)应变下立方相Ca2P0.25Si0.75的能带结构及光学性质进行模拟计算,全面分析了应变对其能带结构、光学性质的影响。计算结果表明:在-8%~0%压应变范围内,随着应变的逐渐增大导带向低能方向移动,价带向高能方向移动,带隙逐渐减小,但始终为直接带隙;在0%~2%张应变范围内,随着应变的增加,带隙逐渐增大,应变为2%时直接带隙达到最大Eg=0.60441eV;当张应变为4%时,Ca2P0.25Si0.75变为间接带隙半导体。Ca2P0.25Si0.75的介电常数和折射率随着张应变的增加而增加;施加-2%~0%压应变时,介电常数和折射率逐渐减小,到达-2%时达到最小值,此后随着压应变的增加介电常数和折射率逐渐增大。施加压应变时吸收谱和反射谱随着应变的增大而减小,施加张应变时吸收谱和反射谱随着应变的增大而增大。应变可以改变立方相Ca2P0.25Si0.75的电子结构和光学常数,是调节其光电传输性能的有效手段。

Abstract

Energy band structure and optical properties of the cubic Ca2P0.25Si0.75 with strain on the (111) surface are calculated by the First Principle pseudo-potential method based on the density functional theory (DFT), and the effect of strain on energy band structure and optical properties is analyzed. The results show that under the compressive strain range of - 8% ~0% , it is direct semiconductor but the band gap decreases with the increase of strain, the conduction band moves to low energy while the valence band moves to high energy; when the tensile strain is 0%~2%, the band gap increases with the increase of strain, when the tensile strain is 2%, the direct band gap is maximum, Eg=0.60441 eV; when the tensile strain is 4% , it turns to indirect semiconductor. The dielectric constant and the refractive index of cubic Ca2P0.25Si0.75 increase with the tensile strain; when the compressive strain is - 2%~0% , the dielectric function and the refractive index decrease; when the compressive strain reaches -2%, the dielectric function and the refractive index are minimum, then they increase with growth of the compressive strain. The absorption and reflectivity decrease with the increase of compressive strain, while they increase with the increase of tensile strain. The energy band structure and optical properties the cubic Ca2P0.25Si0.75 are influenced by strain, which is an effective means to adjust photoelectric transmission performance of cubic Ca2P0.25Si0.75.

中国激光微信矩阵
补充资料

中图分类号:O472+.3

DOI:10.3788/lop51.091603

所属栏目:材料

责任编辑:殷建芳

基金项目:国家自然科学基金(51266002)、教育部科学技术研究重点项目(210200)、贵州省科学技术联合基金(LKM201130)、贵州省优秀科技教育人才省长专项资金(201174)

收稿日期:2014-03-12

修改稿日期:2014-04-11

网络出版日期:2014-08-06

作者单位    点击查看

岑伟富:贵州民族大学理学院, 贵州贵阳550025
杨吟野:贵州民族大学理学院, 贵州贵阳550025
范梦慧:贵州民族大学理学院, 贵州贵阳550025
姚娟:贵州民族大学理学院, 贵州贵阳550025
杨文帮:贵州民族大学理学院, 贵州贵阳550025
黄金保:贵州民族大学理学院, 贵州贵阳550025

联系人作者:岑伟富(cenweifu1988@sina.cn)

备注:岑伟富(1988—),男,硕士研究生,主要从事电子功能材料方面的研究。

【1】Lebègue S, Arnaud B, Alouani M. Calculated quasiparticle and optical properties of orthorhombic and Ca2Si[J]. Phys Rev B, 2005, 72(8): 1-8.

【2】Imai Y, Watanabe A. Energetics of alkaline- earth metal silicides calculated using a first- principle pseudo potential method[J]. Intermetallics, 2002, 10(4): 333-341.

【3】Matsui H, Kuramoto M, Ono T, et al.. Growth of Ca2Si layers on Mg2Si/Si(111) substrates[J]. Cryst Growth, 2002, 237-239: 2121-2124.

【4】Cheng J, Yang Y Y, Liang Y. Selective growth of Ca2Si film or Ca5Si3 film in Ca-Si system by R.F. MS by Annealing[C].2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale, 2012. 75-79.

【5】Imai Y, Watanabe A,Mukaida M. Electronic structures of semiconducting alkaline- earth metal silicides[J]. Journal of Alloys and Compounds, 2003, 358(1-2): 257-263.

【6】Migas D B, Miglio L, Shaposhnikov V L, et al.. Comparative study of structural, electronic and optical properties of Ca2Si, Ca2Ge, Ca2Sn and Ca2Pb[J]. Phys Rev B, 2003, 67(20): 205203.

【7】Takagi N, Sato Y, Matsuyama T, et al.. Growth and structural properties of Mg2Si and Ca2Si bulk cystals[J]. Appl Surf Sci, 2005, 244(1-4): 330-333.

【8】Busch C, Junod P, Katz U, et al.. Electrical conductivity of the intermetallic compounds Ca2Si, Ca2Sn, Ca2Pb, ZnSb[J].Helv Phys Acta, 1954, 27(33): 193-197.

【9】Yang Y Y, Xie Q. The selective growth of a single phase calcium silicide film in the Ca- Si system by R.F. magnetron sputtering[C]. 2nd International Conference on Anti-Counterfeiting, Security and Identification, 2008. 360-363.

【10】Yang Y Y, Xie Q. Growth characteristics of calcium silicides film from the deposited Ca films at the different sputtering Ar pressure[J]. ISCSCT, 2008. 484-487.

【11】Yang Y Y, Xie Q. A single phase semiconducting Ca- silicide film growth by sputtering conditions, annealing temperature and annealing tim[J]. J Materials Science, 2009, 44(14): 3877-3882.

【12】Yang Y Y, Xie Q. Selective growth of Ca2Si film by annealing from the different thickness of Ca films by sputtering[J]. J Materials Science and Engineering, 2009, 27(5): 675-678.

【13】Yang Y Y, Xie Q. The selective growth of a single phase Ca- silicide film from Ca- Si system by R.F. magnetron sputtering and by annealing[J]. International Journal of Information and Electronics, 2008, 2(4): 6-9.

【14】Ma Jianli, Zhang Heming, Song Jianjun, et al.. Energy band structure of uniaxial-strained silicon material on the (001)surface arbitrary orientation[J]. Acta Physica Sinica, 2011, 60(2): 027101.
马建立, 张鹤鸣, 宋建军, 等. (001)面任意方向单轴应变硅材料能带结构[J]. 物理学报, 2011, 60(2): 027101.

【15】Wang Guanyu, Ma Jianli, Zhang Heming, et al.. Model of intrinsic carrier concentration of [110]/(001)-uniaxial strained Si[J]. Acta Physica Sinica, 2011, 60(7): 077105.
王冠宇, 马建立, 张鹤鸣, 等. [110](/ 0001)单轴应变Si本征载流子浓度模型[J]. 物理学报, 2011, 60(7): 077105.

【16】Cui Dongmeng, Jia Rui, Xie Quan, et al.. First- priciples calculations of stressed Ru2Si3[J]. Chinese Journal of Luminescence, 2011, 32(9): 907-912.
崔冬萌, 贾锐, 谢泉, 等. Ru2Si3在应力作用下的第一性原理研究[J]. 发光学报, 2011, 32(9): 907-912.

【17】Niu Yufeng, Zhuang Yiqi, Hu Huiyong, et al.. Band structure of strained Si/(001) Si1- xGex by the first principles investigation[J]. Research & Progress of SSE, 2009, 29(3): 315-320.
牛玉峰, 庄奕琪, 胡辉勇, 等. 第一性原理研究应变Si/(001)Si1-xGex 能带结构[J]. 固体电子学研究与进展, 2009, 29(3): 315-320.

【18】Hu Zixiang, Wu Yuxi, Gu Shulin, et al.. Varying characteristics of crystal structures and optical properties of ZnO under pressure[J]. Chinese Journal of Quantum Electronics, 2010, 27(5): 613-619.
胡智向, 吴玉喜, 顾书林, 等. 外压调制下ZnO 晶体结构与光学性质变化特性的研究[J]. 量子电子学报, 2010, 27(5): 613-619.

【19】Yan Wanjun, Zhang Chunhong, Gui Fang, et al.. Electronic structure and optical properties of stressed β-FeSi2[J].Acta Optica Sinca, 2013, 33(7):0716001.
闫万珺, 张春红, 桂放, 等. 应力调制下β -FeSi2电子结构及光学性质[J]. 光学学报, 2013, 33(7): 0716001.

【20】Segall M D, Lindan P J D, Probert M J, et al.. First-principles simulation: Ideas, illustrations and the CASTEP code[J].Journal of Physics, 2002, 14(11): 2717-2744.

引用该论文

Cen Weifu,Yang Yinye,Fan Menghui,Yao Juan,Yang Wenbang,Huang Jinbao. Effect of Strain on (111) Surface on Energy Band Structure and Optical properties of Cubic Ca2P0.25Si0.750.75[J]. Laser & Optoelectronics Progress, 2014, 51(9): 091603

岑伟富,杨吟野,范梦慧,姚娟,杨文帮,黄金保. (111)应变对立方相Ca2P0.25Si0.750.75能带结构及光学性质的影响[J]. 激光与光电子学进展, 2014, 51(9): 091603

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF