首页 > 论文 > 光学学报 > 35卷 > 8期(pp:813001--1)

一种基于深刻蚀的硅基周期波导微腔

Silicon Photonic Crystal Nanobeam Cavities Fabricated by Deep-Etching Method

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

研究了一种基于深刻蚀的硅基周期波导一维光子晶体微腔,采用时域有限差分(FDTD)方法对设计的微腔结构进行了模拟分析;讨论了深刻蚀对微腔品质因数的影响,计算表明采用深刻蚀可有效地保持高Q 值并能保证微腔的机械强度。采用电子束光刻(EBL)结合感应耦合等离子体(ICP)刻蚀制作了绝缘硅(SOI)的周期波导微腔,使用扫描电子显微镜(SEM)和原子力显微镜(AFM)对器件形貌进行表征,观察到深刻蚀的衬底二氧化硅高度约为80 nm。通过波导光栅耦合光纤输入宽带光源信号对微腔器件进行光学表征,传输光谱测试表明该深刻蚀微腔器件Q 值达5×103,插入损耗小于-2 dB。该深刻蚀的硅基周期波导微腔可用于集成光传感器和片上波分复用滤波器等应用。

Abstract

A silicon photonic crystal nanobeam caivity based on deep- etching method is presented. Using finite difference time domain (FDTD) method, the influence of deep- etching on the Q factor of nanobeam cavities is designed and analyzed. The calculated results show that the deep- etching scheme can keep the high-Q value close to the air-bridge peer, as well as robust mechanical strength. The devices are fabricated on silicon on insulator (SOI) platform using electron beam lithography (EBL) and inductively coupled plasma (ICP). Scanning electron microscope (SEM) and atomic force microscope (AFM) are employed to characterize the morphology of the fabricated nanobeam cavities. The measured transmission spectra indicate that the Q factor of deeply- etched nanobeam cavities surpass 5 × 103 with acceptable insertion loss of less than - 2 dB. These deeply-etched nanobeam cavities can find their applications in on-chip optical sensors or optical filters.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN256

DOI:10.3788/aos201535.0813001

所属栏目:集成光学

基金项目:国家自然科学基金(61405177)、浙江省自然科学基金(LY14F030013)、宁波市自然科学基金(2014A610150,2013A610004)、福建省教育厅省属高校专项(JK2013053)、福建省中青年教师教育科研项目(JA13303)

收稿日期:2015-01-27

修改稿日期:2015-04-14

网络出版日期:--

作者单位    点击查看

喻平:浙江大学宁波理工学院, 浙江 宁波 315100
邱晖晔:龙岩学院, 福建 龙岩 364012
吴飞青:浙江大学宁波理工学院, 浙江 宁波 315100
王卓远:浙江大学宁波理工学院, 浙江 宁波 315100
喻明艳:浙江大学宁波理工学院, 浙江 宁波 315100
俞恩军:浙江大学宁波理工学院, 浙江 宁波 315100

联系人作者:喻平(yuping@nit.zju.edu.cn)

备注:喻平(1980—),男,博士,讲师,主要从事集成光电子技术方面的研究。

【1】Vahala K J. Optical microcavities[J]. Nature, 2003, 424(6950): 839-846.

【2】Reed G T, Knights A P. Silicon Photonics: An Introduction[M]. Chichester: John Wiley & Sons Ltd Press, 2004: 91-92.

【3】Yu Ping, Jiang Xiaoqing, Yang Jianyi, et al.. Minimum mode spot size in a three-layer dielectric optical waveguide[J]. Acta Optica Sinica, 2010, 30(12): 3530-3536.
喻平, 江晓清, 杨建义, 等. 三层介质平板光波导的最小模斑尺寸[J]. 光学学报, 2010, 30(12): 3530-3536.

【4】Joannopoulos J D, Johnson S G, Winn J N, et al.. Photonic Crystals: Molding the Flow of Light[M]. New Jersey: Princeton University Press, 2008: 1-10.

【5】Yu P, Qiu C, Hu T, et al.. High-Q Photonic crystal cavity in a single-mode silicon ridge waveguide[J]. Chin Phys Lett, 2013, 30(10): 104204.

【6】Yu P, Qi B, Xu C, et al.. An improved surface-plasmonic nanobeam cavity for higher Q and smaller V[J]. Chinese Sci Bull, 2012, 57(25): 3371-3374.

【7】Yu P, Qi B A, Jiang X Q, et al.. Ultrasmall- V high-Q photonic crystal nanobeam microcavities based on slot and hollow-core waveguides[J]. Opt Lett, 2011, 36(8): 1314-1316.

【8】Yu P, Hu T, Qiu H Y, et al.. Fano resonances in ultracompact waveguide Fabry-Perot resonator side-coupled lossy nanobeam cavities[J]. Appl Phys Lett, 2013, 103(9): 091104.

【9】Yu P, Hu T, Qiu C, et al.. Ultracompact, reflection-free and high-efficiency channel drop filters based on photonic crystal nanobeam cavities[J]. Chin Phys Lett, 2013, 30(3): 034210.

【10】Quan Q M, Deotare P B, Loncar M. Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide[J]. Appl Phys Lett, 2010, 96(20): 203102.

【11】Desiatov B, Goykhman I, Levy U. Parabolic tapered photonic crystal cavity in silicon[J]. Appl Phys Lett, 2012, 100(4): 041112.

【12】Pernice W H P, Xiong C, Schuck C, et al.. High-Q aluminum nitride photonic crystal nanobeam cavities[J]. Appl Phys Lett, 2012, 100(9): 091105.

引用该论文

Yu Ping,Qiu Huiye,Wu Feiqing,Wang Zhuoyuan,Yu Mingyan,Yu Enjun. Silicon Photonic Crystal Nanobeam Cavities Fabricated by Deep-Etching Method[J]. Acta Optica Sinica, 2015, 35(8): 0813001

喻平,邱晖晔,吴飞青,王卓远,喻明艳,俞恩军. 一种基于深刻蚀的硅基周期波导微腔[J]. 光学学报, 2015, 35(8): 0813001

被引情况

【1】王婷,梁斌明,蒋强,曹恒,高伦. 光子晶体的减反特性研究. 激光与光电子学进展, 2016, 53(4): 41602--1

【2】韩笑男,韩秀友,邵宇辰,陆志理,滕婕,武震林,王锦艳,赵明山. Slot 结构聚合物波导微环光学生物传感器研究. 光学学报, 2016, 36(4): 413001--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF