光子学报, 2009, 38 (3): 587, 网络出版: 2010-07-16  

介质层厚度无序对Bragg微腔模式的影响

Effects of Disorder on Mode of Photonic Crystal Bragg Cavity
作者单位
南京理工大学 理学院,南京 210094
摘要
采用本征模展开法(EME)结合完全匹配层(PML)边界条件,研究了由TiO2和SiO2复合膜结构组成的平面光子晶体Bragg微腔的模式特性,分析了介质厚度无序对微腔模式的调制以及入射角对局域长度的影响.结果表明,若光束正入射,带边局域长度要大于禁带局域长度,随着无序度的增加光子通带的透过率逐渐降低,而禁带的透过率逐渐上升.当无序度较小时,局域长度随随机度的变化在带边和禁带内表现出相反的规律.当无序度较大时,局域长度不仅和随机度、带隙有关,还受到材料的影响;若光束斜入射,TE模的局域长度要远小于TM模对应的值,且其最小值向短波方向移动。此外,入射角和膜层数的变化都会导致局域长度的起伏.
Abstract
Based on eigen-mode expansion method (EME) and perfectly matched layer (PML) absorbing boundary condition, the properties of the mode of planar photonic crystal Bragg cavity, which was composed of TiO2and SiO2 bi-layers,were investigated. The study of localization behavior in a randomly layered medium was extended from normal to oblique incidence,and both TE and TM modes were considered. The effects of disorder and incident angle on the mode and the localization length of the cavity are studied in detail. The localization length was found to be very small in gaps and much larger in edge regions.The transmission decreases in edges while increases in gaps as the disordering degree increases .The results show that when light incidents upon the system and if the disordering degree is small, the localization length of the edge is lager than the one in the gap, and their relationship with disordering degree is different. When the disordering degree increases, localization length is affected not only by disordering degree and photonic band gap, but also the material. Moreover, the localization length can be changed with period and incident angle, and its behaviors are very different for TE and TM modes.

郑改革, 史林兴, 王海娇, 蒋立勇, 李相银. 介质层厚度无序对Bragg微腔模式的影响[J]. 光子学报, 2009, 38(3): 587. ZHENG Gai-ge, SHI Lin-xing, WANG Hai-jiao, JIANG Li-yong, LI Xiang-yin. Effects of Disorder on Mode of Photonic Crystal Bragg Cavity[J]. ACTA PHOTONICA SINICA, 2009, 38(3): 587.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!