首页 > 论文 > 量子电子学报 > 25卷 > 6期(pp:649-656)

可调谐光子带隙晶体的研究进展

Tunable photonic band gap crystals

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

近几年来,人们对可调谐光子晶体的兴趣日益增长,并且实际光子器件的应用推动着动态调谐方法的进一步发展。本文主要从光子带隙晶体的调谐机制、调谐途径、所用材料等方面,综述了可调谐光子晶体的研究进展。系统介绍了利用外部应力、电场、磁场、温度等激励,控制晶体结构参数的变化,实现光子带隙的改变;还介绍了通过控制介电材料来改变光子带隙,主要介绍了液晶材料、电光材料等几种常用的材料。比较了不同调谐方法的特点。最后分析了光子晶体带隙调谐的进一步研究方向。

Abstract

Tunable photonic crystals(PC)draw rapidly growing interests in recent years. Practical applications in photonic devices provide a strong motivation to further development of dynamic tenability. The current progresses on tunable photonic crystal are reviewed from the aspects of the approaches,mechanisms,and materials. The tenability of photonic band gap on the condition of the change of the crystals structure parameters is described in details by utilizing the external force,electric field,magnetic field,and so on. The researches of changing the average refractive index of materials to control the band gap are also introduced,among which liquid crystal materials and electro-optic materials are mainly described. The advantages of different tunable methods are compared. Finally,the perspectives of the future research are briefly predicted .

投稿润色
补充资料

中图分类号:O43;TN2

所属栏目:综述

基金项目:国家自然科学基金(10704006和10404036)以及北京化工大学青年教师科学研究基金资助项目

收稿日期:2008-01-13

修改稿日期:2008-03-11

网络出版日期:0001-01-01

作者单位    点击查看

任坤:天津大学精密仪器与光电子工程学院,光电信息技术科学教育部重点实验室,天津 300072
冯志芳:北京化工大学,北京 100029
任晓斌:北京师范大学物理系,北京 100875

联系人作者:任坤(renkun@tju.edu.cn)

备注:任坤|博士学位,讲师|主要从事光子晶体,负折射率材料以及量子光学的研究|(1976-)

【1】Fang Y,Shen T,Zhang S,et al. Absolute photonic gaps from 2D square com pound lattices [J].Chinese Journal of Quantum Electronics(量子电子学报),2005,22(3): 411-414(in Chinese).

【2】Zhang Y,Wang Q. Defects in three-dimensional photonic crystal [J].Chinese Journal of Quantum Electronics(量子电子学报),2006,23(5): 671-676(in Chinese).

【3】Figotin A,Godin Y A,Vitebsky I. Two-dimensional tunable photonic crystals [J].Phys. Rev. B,1998,57(5):2841-2848.

【4】Joannopoulos J D,Meade R D,Winn J N. Photonic Crystals: Molding the Flow of Light [M].Princeton: Princeton University Press,1995.

【5】Busch K,John S. Photonic band gap formation in certain self-organizing systems [J].Phys. Rev. E,1998,58(3):3896-3908.

【6】Yoshino K,Kawagishi Y,Ozaki,M,et al. Mechanical tuning of the optical properties of plastic opal as a photonic crystal [J].Jpn. J. Appl. Phys.,1999,38(7A): L786-L788.

【7】Khokhar A Z,Rue R M De La,Ren K,et al. Permanent tuning of the opal stop-band with the application of uniaxial pressure [J].J. Opt. A,2007,9: 446-450.

【8】Kim S,Gapalan V. Strain-tunable photonic band gap crystals [J].Appl. Phys. Lett.,2001,78(20): 3015-3017.

【9】Golosovsky M,Saado Y,Davidov D. Self-assembly of floating magnetic particles into ordered structures: a promising route for the fabrication of tunable photonic band gap materials [J].Appl. Phys. Lett.,1999,75(26):4168-4170.

【10】Golosovsky M,Neve-Oz Y,Davidav D. Magnetic-field-tunable photonic stop band in a three-dimensional array of conducting spheres [J].Phys. Rev. B,2005,71(19): 195105.

【11】Xu X,Friedman G,Humfeld K D. Synthesis and utilization of monodisperse superparamagnetic colloidal particles for magnetically controllable photonic crystals [J].Chem. Mater.,2002,14(3): 1249-1256.

【12】Weissman J M,Sunkara H B,Tse A S,et al. Thermally switchable periodicities and diffraction from mesoscopically ordered materials [J].Science,1996,274: 959-963.

【13】Holtz J H,Asher S A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials [J].Nature,1997,389: 829-832.

【14】Lee K,Asher S A. Photonic crystal chemical sensors: pH and ionic strength [J].J. Am. Chem. Soc.,2000,122(39): 9534-9537.

【15】Gu Z Z,Fujishima A,Sato O. Photochemically tunable colloidal crystals [J].J. Am. Chem. Soc.,2000,122:12387-12388.

【16】Busch K,John S. Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum [J].Phys.Rev. Lett.,1999,83(5): 967-970.

【17】Yoshino K,Satoh S,Shimoda Y,et al. Temperature tuning of the stop band in transmission spectra of liquidcrystal infiltrated synthetic opal as tunable photonic crystal [J].Appl. Phys. Lett.,1999,75(7): 932-934.

【18】Mertens G,Roder T,Schweins R,et al. Shift of the photonic band gap in two photonic crystal/liquid crystal composites [J].Appl. Phys. Lett.,2002,80(11): 1885-1887.

【19】Leonard S W,Mondia J P,van Driel H M,et al. Tunable two-dimensional photonic crystals using liquid-crystal infiltration [J].Phys. Rev. B,2000,61(4):R2389-R2392.

【20】Mertens G,Wehrspohn R B,et al. Tunable defect mode in a three-dimensional photonic crystal [J].Appl. Phys.Lett.,2005,87(24): 241108.

【21】Schuller Ch,Klopf F,Reithmaier J P,et al. Tunable photonic crystals fabricated in Ⅲ-V semiconductor slab waveguides using infiltrated liquid crystals [J].Appl. Phys. Lett.,2003,82(17): 2767-2769.

【22】Shimoda Y,Ozaki M,Yoshino K. Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal [J].Appl. Phys. Lett.,2001,79(22): 3627-3629

【23】Ozaki M,Shimoda Y,Kasano M,et al. Electric field tuning of the stop band in a liquid-crystal-infiltrated polymer inverse opal [J].Adv. Mater.,2002,14(7): 514-518.

【24】Chen C Y,Tsai T R,Pan C L,et al. Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals [J].Appl. Phys. Lett.,2003,83(22): 4497-4499.

【25】Kubo S,Gu Z Z,Takahashi K,et al. Control of the optical band structure of liquid crystal infiltrated inverse opal by a photoinduced nematic-isotropic phase transition [J].J. Am. Chem. Soc.,2002,124(37): 10950-10951.

【26】Kubo S,Gu Z Z,Takahashi K,et al. Tunable photonic band gap crystals based on a liquid crystal-infiltrated inverse opal structure [J].J. Am. Chem. Soc.,2004,126(26): 8314-8319.

【27】Kubo S,Gu Z Z,Takahashi K,et al. Control of the optical properties of liquid crystal-infiltrated inverse opal structures using photo irradiation and/or an electric Field [J].Chem. Mater.,2005,17(9): 2298-2309.

【28】Kee C S,Lim H,et al. Two-dimensional tunable metallic photonic crystals infiltrated with liquid crystals [J].Phys. Rev. B,2001,64(8): 085114.

【29】McPhail D,Straub M,Gu M. Electrical tuning of three-dimensional photonic crystals,using polymer dispersed liquid crystals [J].Appl. Phys. Lett.,2005,86(5): 051103.

【30】Kang D,Maclennan J E,Clark N A,et al. Electro-optic behavior of liquid-crystal-filled silica opal photonic crystals: Effect of liquid-crystal alignment [J].Phys. ReV. Lett.,2001,86(18): 4052-4055.

【31】Maune B,Lon?ar M,Witzens J,et al. Liquid crystal electric tuning of a photonic crystal laser [J].Appl. Phys.Lett.,2004,85(3): 360-362.

【32】Weiss S M,Ouyang H,Zhang J,et al. Electrical and thermal modulation of silicon photonic bandgap microcavities containing liquid crystals [J].Opt. Express,2005,13(4): 1090-1097.

【33】Tolmachev V A,Perova T S,Grudinkin S A,et al. Electrotunable in-plane one-dimensional photonic structure based on silicon and liquid crystal [J].Appl. Phys. Lett.,2007,90(1): 011908.

【34】Graugnard E,Dunham S N,King J S,et al. Enhanced tunable Bragg diffraction in large-pore inverse opals using dual-frequency liquid crystal [J].Appl. Phys. Lett.,2007,91(11): 111101.

【35】Roussey M,Bernal M,Courjal N,et al. Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons [J].Appl. Phys. Lett.,2006,89(24): 241110.

【36】Li B,Zhou J,Li L,et al. Ferroelectric inverse opals with electrically tunable photonic band gap [J].Appl. Phys.Lett.,2005,83(23): 4704-4706.

【37】Ren K,Li Z Y,Ren X B,et al. Tunable negative refraction by electro-optical control in two-dimensional photonic crystal [J].Appl. Phy. A,2007,87(2): 181-185.

【38】Takeda H,Yoshino K. Tunable photonic band gaps in two-dimensional photonic crystals by temporal modulation based on the Pockels effect [J].Phys. Rev. E,2004,69(1): 016605.

【39】Ahlheim M,Barzoukas M,Bedworth P V,et al. Chromophores with strong heterocyclic acceptors: a poled polymer with a large electro-optic coefficient [J].Science,1996,271(5247): 335-337.

【40】Kim T D,Kang J W,Luo J. Ultralarge and thermally stable electro-optic activities from supramolecular selfassembled molecular glasses [J].J. Am. Chem. Soc.,2007,129(3): 488-489.

【41】Schmidt M,Eich M,Huebner U,et al. Electro-optically tunable photonic crystals [J].Appl. Phys. Lett.,2005,87(12): 121110.

【42】Gan H,Zhang H,DeRose C T,et al. Low drive voltage Fabry-Pérot étalon device tunable filters using poled hybrid sol-gel materials [J].Appl. Phys. Lett.,2006,89(4): 041127.

【43】Kee C S,Kim J E,Park H Y,et al. Two-dimensional tunable agnetic photonic crystals [J].Phys. Rev. B,2000,(61): 15523-15525.

【44】Halevi P,Mendieta F R. Tunable photonic crystals with semiconducting constituents [J].Phys. Rev. Lett.,2000,(85): 1875-1878.

【45】Kushwaha M S,Rouhani B D. Band-gap engineering in two-dimensional periodic photonic crystals [J].J. Appl.Phys.,2000,(88): 2877-2884.

【46】Kee C S,Lim H. Tunable complete photonic band gaps of two-dimensional photonic crystals with intrinsic semiconductor rods [J].Phys. Rev.. B,2001,(64): 121103.

【47】Lan S,Nishikawa S,Wada O. Levering deep photonic band gaps in photonic crystal impurity bands [J].Appl.Phys. Lett.,2001,(78): 2101-2104.

【48】Ha Y K,Kim J E,Park H Y,et al. Tunable three-dimensional photonic crystals using semiconductors with varying free-carrier densities [J].Phys. Rev. B,2002,(66): 075109.

【49】Raymond Ooi C H,Yeung T C Au,et al. Photonic band gap in a superconductor-dielectric superlattice [J].Phys.Rev. B,2001,61(9): 5920-5923.

【50】Chen Y B,Zhang C,Zhu Y Y,et al. Tunable photonic crystals with superconductor constituents [J].Mater.Lett.,2002,55(1-2): 12-16.

【51】Takeda H,Yoshino K. Tunable photonic band schemes in two-dimensional photonic crystals composed of copper oxide high-temperature superconductors [J].Phys. Rev. B,2003,67(24): 245109.

【52】Pei T H,Huang Y. T. A temperature modulation photonic crystal Mach-Zehnder interferometer composed of copper oxide high-temperature superconductor [J].J. Appl. Phys.,2007,101(8): 084502.

【53】Gu Z Z,Hayami S,Meng Q B,et al. Control of photonic band structure by molecular aggregates [J].J. Am.Chem. Soc.,2000,122(43): 10730-10731.

【54】Gu Z Z,lyoda T,Fujishima A,et al. Photo-reversible regulation of optical stop bands [J].Adv. Mater.,2001,13(17): 1295-1298.

【55】Astratov V N,Adawl A M,Skolnick M S,et al. Opal photonic crystals infiltrated with chalcogenide glass [J].Appl. Phys. Lett.,2001,78(26): 4094-4097.

【56】Hong J C,Park J H,Chun C,et al. Photoinduced tuning of optical stop bands in azopolymer based inverse opal photonic crystals [J].Adv. Funct. Mater.,2007,17: 2462-2469.

【57】Li J,Huang W,Wang Z,et al. A reversibly tunable colloidal photonic crystal via the infiltrated solvent liquidsolid phase transition [J].Colloids and Surfaces A,2007,293(1-3): 130-134.

【58】Yoshino K,Satoh S,Shimoda Y,et al. Tunable optical stop band and reflection peak in synthetic opal infiltrated with liquid crystal and conducting polymer as photonic crystal [J].J. Appl. Phys.,1999,(38): L961-L963.

【59】Leonard S W,van Drel H M,Schilling J,et al. Ultrafast band-edge tuning of a two-dimensional silicon photonic crystal via free-carrier injection [J].Phys. Rev. B,2002,66(16): 161102.

引用该论文

REN Kun,FENG Zhi-fang,REN Xiao-bin. Tunable photonic band gap crystals[J]. Chinese Journal of Quantum Electronics, 2008, 25(6): 0649

任坤,冯志芳,任晓斌. 可调谐光子带隙晶体的研究进展[J]. 量子电子学报, 2008, 25(6): 0649

被引情况

【1】廖同庆,汪忠柱,谢延玉. 基于光子晶体多层膜的对称薄膜波导特性研究. 量子电子学报, 2010, 27(5): 626-632

【2】缪路平,徐旭明,杨春云,叶涛. 一种新型基于光子晶体异质结耦合波导的全光开关的设计. 量子电子学报, 2011, 28(3): 369374--1

【3】白源,何英,杨艳芳,张惠芳. 三元周期序列石墨烯超晶格的透射禁带. 量子电子学报, 2016, 33(2): 231-236

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF