红外与毫米波学报, 2010, 29 (4): 268, 网络出版: 2010-08-31  

气动加热下高温陶瓷材料的红外辐射机理与特性

INFRARED RADIATION OF HIGH TEMPERATURE CERAMICS UNDER AERODYNAMIC HEATING
作者单位
哈尔滨工业大学能源科学与工程学院, 黑龙江 哈尔滨 150001
摘要
从分析材料内部热辐射与导热耦合传热温度场、表面反射及折射之间的内在关系出发,建立了气动加热下高温陶瓷材料的红外辐射模型.采用控制容积法结合蒙特卡罗法和谱带模型,数值模拟了红外辐射能在材料内部的传递及出射过程.引入介质影响因子,分析了材料的红外辐射机理和外部气动热流对材料红外辐射特性的影响.结果表明,高温陶瓷材料内部热辐射的光谱选择性与温度场的耦合,导致高温陶瓷材料的红外发射率随气动热流变化而变化.由于陶瓷材料在紫外和中远红外谱带范围对辐射的吸收非常强,而在近红外和可见光谱带范围对辐射吸收较弱,随气动热流密度增大,对陶瓷材料表面红外辐射产生贡献的内部热辐射区域增大,但材料的红外发射率降低.
Abstract
An infrared radiation model for high temperature ceramics under aerodynamic heating condition was developed by analyzing the relationships between the internal thermal radiation, the temperature field of heat transfer, as well as the reflection and refraction at surface. The control volume method combined with the Monte Carlo method and spectral model were used to simulate the radiation heat transfer in the ceramics and outgoing process. The medium effect factor was introduced to analyze the infrared radiation mechanism of the material and the effects of aerodynamic heating on the infrared characteristics. The results show that the coupling of spectral selectivity of thermal radiation inside the high temperature ceramics of the temperature field results in the dependence of material infrared emissivity on the heat flux of aerodynamic heating. The high temperature ceramics absorbs radiation in ultraviolet, mid-infrared, and far infrared intensively while absorbs radiation in visible spectra and near infrared weakly. So, the effective region inside the material, where the thermal radiation of medium can contribute to the infrared emission of the material surface, enlarges with the increase of aerodynamic heating, but the infrared emissivity of material decreases.

杜胜华, 夏新林. 气动加热下高温陶瓷材料的红外辐射机理与特性[J]. 红外与毫米波学报, 2010, 29(4): 268. DU Sheng-Hua, XIA Xin-Lin. INFRARED RADIATION OF HIGH TEMPERATURE CERAMICS UNDER AERODYNAMIC HEATING[J]. Journal of Infrared and Millimeter Waves, 2010, 29(4): 268.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!