首页 > 论文 > 强激光与粒子束 > 22卷 > 9期(pp:2103-2110)

3维并行全电磁粒子模拟软件UNIPIC-3D

Three-dimensional parallelized fully-electromagnetic particle simulation code UNIPIC-3D

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

介绍了自行研制的3维并行全电磁粒子模拟软件UNIPIC-3D。在该软件中,电磁场量用二阶精度的时域有限差分方法迭代,粒子用相对论牛顿-洛仑兹力方程推进。该软件拥有复杂器件的几何建模和网格自动剖分的功能,具有模拟相对论返波管、虚阴极振荡器、磁绝缘线振荡器等高功率微波器件的能力。且该软件具有强大的后处理功能,可以显示电场、磁场、电流、电压、功率、频谱、粒子相空间等。在高性能并行计算机上对软件的并行效率进行了测试。通过与2.5维UNIPIC软件的结果进行比较,验证了UNIPIC-3D软件的正确性。

Abstract

This paper introduces a self-developed, three-dimensional parallelized fully-electromagnetic particle simulation code UNIPIC-3D. In the code, the electromagnetic fields are updated using the second-order, finite-difference time-domain(FDTD) method, and the particles are moved using the relativistic Newton-Lorentz force equation. The code can be used to simulate the high-power microwave(HPM) devices, such as the relativistic backward wave oscillator, coaxial vircator, and magnetically insulated line oscillator(MILO), etc. Users can use the graphical user’s interface to create complex geometric structures of the simulated HPM devices, which can be automatically meshed by UNIPIC-3D code. The code has a powerful post-processor which can display the electric field, magnetic field, current, voltage, power, spectrum, and momentum of particles. The parallelization efficient of this code has been tested on a high performance computer. To verify the results calculated by UNIPIC-3D code, the results computed by using the 2.5-dimensional UNIPIC code are also provided for the same parameters of HPM device, the numerical results computed with these two codes agree well with each other.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN814;O411.3

所属栏目:高功率微波

基金项目:国家高技术发展计划项目

收稿日期:2009-06-19

修改稿日期:2010-03-04

网络出版日期:0001-01-01

作者单位    点击查看

陈再高:西北核技术研究所, 西安 710024西安交通大学 教育部物理电子与器件重点实验室, 西安 710049
王建国:西北核技术研究所, 西安 710024西安交通大学 教育部物理电子与器件重点实验室, 西安 710049
张殿辉:西北核技术研究所, 西安 710024西安交通大学 教育部物理电子与器件重点实验室, 西安 710049
王玥:西北核技术研究所, 西安 710024西安交通大学 教育部物理电子与器件重点实验室, 西安 710049
刘纯亮:西北核技术研究所, 西安 710024西安交通大学 教育部物理电子与器件重点实验室, 西安 710049
李永东:西北核技术研究所, 西安 710024西安交通大学 教育部物理电子与器件重点实验室, 西安 710049
王洪广:西北核技术研究所, 西安 710024西安交通大学 教育部物理电子与器件重点实验室, 西安 710049
乔海亮:西北核技术研究所, 西安 710024西安交通大学 教育部物理电子与器件重点实验室, 西安 710049
袁媛:西北核技术研究所, 西安 710024西安交通大学 教育部物理电子与器件重点实验室, 西安 710049

联系人作者:陈再高(chbtmczg@163.com)

备注:陈再高(1983—),男,硕士,主要从事瞬态电磁场理论和高功率微波技术的研究工作; chbtmczg@163.com

【1】Barker R J, Schamiloglu E. High-power microwave sources and technologies[M]. New York: IEEE Press, 2001.

【2】Yee K S. Numerical solution of initial boundary-value problem involving Maxwell’s equations in isotropic media[J]. IEEE Trans on Antenna Propagat, 1966, 14 (5):302-307.

【3】Boris J P. Relativistic plasma simulation-optimization of a hybrid code[C]//Proc 4th Conf on Numerical Simulation of Plasmas. 1970.

【4】Rambo P, Ambrosiano J, Friedman A, et al. Temporal and spatial filtering remedies for dispersion in electromagnetic particle codes[C]//Proc 13th Conf on Numerical Simulation of Plasma. 1989.

【5】Wang Jianguo, Zhang Dianhui, Liu Chunliang, et al. UNIPIC code for simulations of high power microwave devices[J]. Phys Plasmas, 2009, 16 : 033108 .

【6】Jones M E, Thode L E. Simulation of intense relativistic electron beam generation by foilless diodes[C]//Proc 2nd IEEE Int Pulsed Power Conf. 1979:68-71.

【7】Frost C A, Poukey J W, Leifeste G T, et al. High brightness immersed source injector characterization[C]//Proc of IEEE Part Accel Conf. 1989:1456-1458.

【8】NCSA. HDF5 user’s guide working draft[EB/OL]. http://hdf.ncsa.uiuc.edu/.

【9】Nation J A. On the coupling of a high-current relativistic beam to a slow wave structure[J]. Appl Phys Lett, 1970, 17 (11):491-494.

【10】Lemke R W, Calico S E, Clark M C. Investigation of a load-limited, magnetically insulated transmission line oscillator (MILO)[J]. IEEE Trans on Plasma Sci, 1997, 25 (4):364-374.

【11】Shao Hao, Liu Guozhi, Song Zhimin, et al. Numerical simulation studies of coaxial vircators[C]//12th Int Conf on High-Power Particle Beams. 1998.

【12】Wang Jianguo, Wang Yue, Zhang Dianhui. Truncation of open boundaries of cylindrical waveguides in 2.5-dimensional problems by using the convolutional perfectly matched layer[J]. IEEE Trans on Plasma Sci, 2006, 34 (3):681-690.

【13】王玥,王建国,张殿辉.CPML截断3维金属矩形波导的应用研究[J].强激光与粒子束, 2005, 17 (10):1557-1563.(Wang Yue, Wang Jianguo, Zhang Dianhui. Truncation of open boundary of 3D rectangular waveguide by CPML. High Power Laser and Particle Beams, 2005, 17 (10):1557-1563)

【14】Chen Juan, Wang Jianguo. A new method to avoid reduction of time step in the CP-FDTD method[J]. IEEE Trans on Antenna Propagat, 2007, 55 (12):3613-3619.

【15】李小泽,王建国,童长江,等.充填不同气体相对论返波管特性的PIC-MCC模拟[J].物理学报, 2008, 56 (7):4013-4022.(Li Xiaoze, Wang Jianguo, Tong Changjiang, et al. PIC-MCC simulations on characteristics of RBWO filled with different gases. Acta Physica Sinica, 2008, 56 (7):4013-4022)

引用该论文

Chen Zaigao,Wang Jianguo,Zhang Dianhui,Wang Yue,Liu Chunliang,Li Yongdong,Wang Hongguang,Qiao Hailiang,Yuan Yuan. Three-dimensional parallelized fully-electromagnetic particle simulation code UNIPIC-3D[J]. High Power Laser and Particle Beams, 2010, 22(9): 2103-2110

陈再高,王建国,张殿辉,王玥,刘纯亮,李永东,王洪广,乔海亮,袁媛. 3维并行全电磁粒子模拟软件UNIPIC-3D[J]. 强激光与粒子束, 2010, 22(9): 2103-2110

被引情况

【1】朱湘琴,王建国,王玥,王光强,陈再高. 2.5维模拟中时域有限差分近-远场变换方法. 强激光与粒子束, 2011, 23(8): 2157-2161

【2】张恒,郝建红,董烨,董志伟,杨温渊,孙会芳. 基于JASMIN并行框架的2.5维粒子模拟程序NEPTUNE2D的研制. 强激光与粒子束, 2016, 28(3): 33007--1

【3】丛培天. 中国脉冲功率科技进展简述. 强激光与粒子束, 2020, 32(2): 25002-25002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF