首页 > 论文 > 光学学报 > 30卷 > s1期(pp:s100403--1)

数字共焦显微技术成像分辨率

Image Resolution of Digital Confocal Microscopy

陈华   聂雄  
  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

生物光学显微镜对生物细胞(组织)厚样本成像时,由于受衍射和散焦成份的共同影响,成像分辨率明显下降。数字共焦显微技术通过三维图像复原方法可以提高图像分辨率。提出了分辨率劣化比和分辨率改善比的指标,并设计了一个包含相互间不同横向和轴向间距的光点和线条的仿真厚样本,采用半峰全宽(FWHM),对仿真的生物光学显微镜薄样本衍射成像、叠加散焦成份的厚样本成像和数字共焦显微技术复原图像的分辨率进行测定和评价。研究结果表明,数字共焦显微技术具有很高的分辨率改善比,可以有效地恢复厚样本横向和轴向分辨率。

Abstract

When biological cells or tissue thick specimens are imaged by bio-optical microscopy, image resolution decreased significantly due to the impact of diffraction and defocus. Digital confocal microscopy can improve the image resolution through a three-dimensional image restoration method. The criterions of resolution degradation ratio and resolution improvement ratio are proposed, and a simulation-thick specimen is designed with different lateral and axial spacing of optical points and lines. The full width at half-maximam is used for measurement, evaluation and analysis in the image resolution of thin specimen diffraction imaging, thick specimen imaging containing out-of-focus ingredients, and image by restored digital confocal microscopy. The results show that the digital confocal microscopy has high resolution improve ratio, and can restore lateral and axial resolution of thick specimen effectively.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN911.73

DOI:10.3788/aos201030.s100403

所属栏目:傅里叶光学与光信号处理

基金项目:广西自然科学基金(桂科自0728034),广西高校人才小高建设创新团队资助计划(桂教人[2007]71号),广西科学研究与技术开发计划项目(桂科攻0992002-23),南宁市科学研究与技术开发计划(200801028A)和广西大学科学基金(X071005)资助课题。

收稿日期:2010-03-17

修改稿日期:2010-05-31

网络出版日期:0001-01-01

作者单位    点击查看

陈华:广西大学计算机与电子信息学院, 广西 南宁 530004
聂雄:广西大学计算机与电子信息学院, 广西 南宁 530004

联系人作者:陈华(chenhua_cn@163.com)

备注:陈华(1958—),男,博士,教授,主要从事生物显微图像处理与光电成像技术方面的研究。

【1】T. J. Holmes, Blind convolution of quantum-limited imagery: maximum likelihood approach [J]. J. Opt. Soc. Am. A, 1992, 9(7): 1052~1061

【2】S. Joshi, and M. I. Miller. Maximum x posteriori Estimation with Good’s roughness for optical-sectioning microscopy [J]. J. Opt. Soc. Am. A, 1993, 10(5): 1078~1085

【3】J. A. Conchello, J. G. McNally, Fast regularization technique for expectation maximization algorithm for optical-sectioning microscopy [C]. SPIE, 1996, 2655: 199~208

【4】M. R. P. Momem, N. D. A. Mascarenhas, L. F. Costa et al.. Biological image restoration in optical-sectioning microscopy using prototype image constraints [J]. Real-Time Imaging, 2002, 8: 475~490

【5】M. R. P. Homem, N. D. A. Mascarenhas, L. F. Costa. Linear filters for deconvolution microscopy [C]. Image Analysis and Interpretation, 2004. 6th IEEE Southwest Symposium on 28-30 March, 2004: 142~146

【6】D. Laksa meethanasan, S. S. Brandt, P. Engelhardt A. three-dimensional Bayesian reconstruction method with the point spread function for micro-rotation sequences in wide-field microscopy[C]. Biomedical Imaging: Macro to Nano, 2006. 3rd IEEE International Symposium on 6-9 April 2006: 1276~1279

【7】Qingchuan Tao, Xiaohai He, Jia Zhao et al.. Image estimation based on depth-variant imaging model in three-dimensional microscopy [C]. SPIE, 2005, 5637: 590~598

【8】Zhao Jia , He Xiaohai, Tao Qingchuan et al.. Regularized EM image estimation based on depth-variant imaging model[J]. Optical Technique, 2006, 32(3): 396~402
赵佳, 何小海, 陶青川 等. 基于深度变化成像模型的调整EM算法[J]. 光学技术, 2006, 32(3): 396~402

【9】K. R. Castleman. Digital Image Processing[M]. Zhu Zhigang et al.. Transl. BeiJing: Publishing House of Electronics Industry, 2002: 308~310
K. R.卡斯尔曼. 数字图像处理[M]. 朱志刚等译. 北京: 电子工业出版社. 2002: 319~322

【10】Chen Hua, Jin Weiqi, Wang Xia et al.. Investigation about 3D microscopical image restoration and PSF [J]. Optical Technique, 2006, 32(3): 434~439
陈华, 金伟其, 王霞 等. 三维显微图像复原及点扩散函数的研究[J]. 光学技术, 2006, 32(3): 434~439

引用该论文

Chen Hua,Nie Xiong. Image Resolution of Digital Confocal Microscopy[J]. Acta Optica Sinica, 2010, 30(s1): s100403

陈华,聂雄. 数字共焦显微技术成像分辨率[J]. 光学学报, 2010, 30(s1): s100403

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF