Photonics Research, 2020, 8 (6): 06000954, Published Online: May. 21, 2020   

Edge enhancement through scattering media enabled by optical wavefront shaping Download: 743次

Author Affiliations
1 Deparment of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
2 The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
3 CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
4 Key Laboratory for Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
5 Currently at: Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
Abstract
Edge enhancement is a fundamental and important topic in imaging and image processing, as perception of edge is one of the keys to identify and comprehend the contents of an image. Edge enhancement can be performed in many ways, through hardware or computation. Existing methods, however, have been limited in free space or clear media for optical applications; in scattering media such as biological tissue, light is multiple scattered, and information is scrambled to a form of seemingly random speckles. Although desired, it is challenging to accomplish edge enhancement in the presence of multiple scattering. In this work, we introduce an implementation of optical wavefront shaping to achieve efficient edge enhancement through scattering media by a two-step operation. The first step is to acquire a hologram after the scattering medium, where information of the edge region is accurately encoded, while that of the nonedge region is intentionally encoded with inadequate accuracy. The second step is to decode the edge information by time-reversing the scattered light. The capability is demonstrated experimentally, and, further, the performance, as measured by the edge enhancement index (EI) and enhancement-to-noise ratio (ENR), can be controlled easily through tuning the beam ratio. EI and ENR can be reinforced by 8.5 and 263 folds, respectively. To the best of our knowledge, this is the first demonstration that edge information of a spatial pattern can be extracted through strong turbidity, which can potentially enrich the comprehension of actual images obtained from a complex environment.

Zihao Li, Zhipeng Yu, Hui Hui, Huanhao Li, Tianting Zhong, Honglin Liu, Puxiang Lai. Edge enhancement through scattering media enabled by optical wavefront shaping[J]. Photonics Research, 2020, 8(6): 06000954.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!