首页 > 论文 > 中国激光 > 46卷 > 8期(pp:802001--1)

激光诱导液相基质等离子体的空间演化特性

Spatial Evolution Characteristics of Laser-Induced Plasma in Liquid Matrix

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了揭示液相基质激光诱导击穿光谱(LIBS)与固相基质LIBS特性差异的产生机理,采用液体射流取样技术,利用脉冲激光烧蚀CrCl3水溶液产生激光等离子体,研究了等离子体中Cr元素发射光谱、等离子体电子温度和电子密度的空间演化特性。结果表明:相对于固相基质等离子体,液相基质激光等离子体存在明显不同的空间演化特性,在激光束传播方向上,等离子体可以沿着激光束传播方向膨胀至距离射流表面0.8 mm处;等离子体羽发光区域的线径较小,约为3.2 mm;离子谱线与原子谱线的峰值强度出现在不同位置,分别距离射流表面0.8 mm和0.4 mm;等离子体的电子温度低,电子密度值小,在激光束传播方向上两者的变化范围分别为2939~3611 K和0.0149×10 14~4.86×10 14 cm -3,且在离射流表面0.8 mm处达到最大值;与固相基质等离子体类似,液相基质等离子体的发射光谱、电子温度和电子密度的空间演化特性具有较好的空间对称性。

Abstract

In order to reveal the generation mechanistic of laser-induced breakdown spectroscopy characteristic difference between liquid and solid matrices, spatial evolution characteristics of Cr-element emission spectra, electron temperature, and electron density of the plasma generated via the pulsed laser ablation of a CrCl3 aqueous solution using liquid jet sampling technology are investigated. Results show that the laser-induced plasma in the liquid matrix has distinctly different spatial evolution characteristics compared with that in the solid matrix. Along the direction of the laser beam, the plasma can expand up to 0.8 mm away from the jet surface and the plasma plume has a small linear diameter of approximate 3.2 mm. Further, the maximum intensities of ionic and atomic spectral lines appear 0.8 mm and 0.4 mm away from the jet surface, respectively. Simultaneously, the electron temperature and electron density of the plasma are small and slightly vary within 2939-3611 K and (0.0149-4.86)×10 14 cm 3, respectively, along the laser beam direction. Maximum values are observed at 0.8 mm away from the jet surface. Similar to the solid-matrix plasma, the spatial evolution characteristics of plasma emission spectra, electron temperature, and electron density of the liquid-matrix plasma have good spatial symmetry.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/CJL201946.0802001

所属栏目:激光制造

基金项目:国家自然科学基金、国家青年科学基金、安徽省重点研究与开发、安徽高校自然科学研究项目、安徽师范大学创新基金;

收稿日期:2019-03-01

修改稿日期:2019-04-03

网络出版日期:2019-08-01

作者单位    点击查看

余建立:安徽师范大学光电材料科学与技术安徽省重点实验室, 安徽 芜湖 241000巢湖学院电子工程学院, 安徽 巢湖238000
李乘:安徽师范大学光电材料科学与技术安徽省重点实验室, 安徽 芜湖 241000
姚关心:安徽师范大学光电材料科学与技术安徽省重点实验室, 安徽 芜湖 241000
杨新艳:安徽师范大学光电材料科学与技术安徽省重点实验室, 安徽 芜湖 241000
张先燚:安徽师范大学光电材料科学与技术安徽省重点实验室, 安徽 芜湖 241000
郑贤锋:安徽师范大学光电材料科学与技术安徽省重点实验室, 安徽 芜湖 241000
崔执凤:安徽师范大学光电材料科学与技术安徽省重点实验室, 安徽 芜湖 241000

联系人作者:崔执凤(zfcui@ahnu.edu.cn)

备注:国家自然科学基金、国家青年科学基金、安徽省重点研究与开发、安徽高校自然科学研究项目、安徽师范大学创新基金;

【1】Gu Y H, Zhao N J, Ma M J et al. Monitoring the heavy element of Cr in agricultural soils using a mobile laser-induced breakdown spectroscopy system with support vector machine. Chinese Physics Letters. 33(8), (2016).

【2】Zhang Q H, Liu Y Z, Zhu R S et al. Detection of Pb in atmospheric particulates with laser-induced breakdown spectroscopy technique. Laser & Optoelectronics Progress. 55(12), (2018).
张启航, 刘玉柱, 祝若松 等. 利用激光诱导击穿光谱技术探测大气颗粒物中的Pb元素. 激光与光电子学进展. 55(12), (2018).

【3】Zhang Y, Li Y, Li W D et al. Classification of geological samples based on soft independent modeling of class analogy using laser-induced breakdown spectroscopy. Journal of Spectroscopy. 2018, (2018).

【4】Ying L N and Zhou W D. Comparative analysis of multiple chemometrics methods in application of laser-induced breakdown spectroscopy for quantitative analysis of soil elements. Acta Optica Sinica. 38(12), (2018).
应璐娜, 周卫东. 对比分析多种化学计量学方法在激光诱导击穿光谱土壤元素定量分析中的应用. 光学学报. 38(12), (2018).

【5】Chen X, Li X H, Yang S B et al. Discrimination of lymphoma using laser-induced breakdown spectroscopy conducted on whole blood samples. Biomedical Optics Express. 9(3), 1057-1068(2018).

【6】Teran-Hinojosa E, Sobral H, Sánchez-Pérez C et al. Differentiation of fibrotic liver tissue using laser-induced breakdown spectroscopy. Biomedical Optics Express. 8(8), 3816-3827(2017).

【7】Xiu J S, Liu S M, Wang K K et al. Analytical investigation of Cu(In, Ga)Se2 thin films using laser induced breakdown spectroscopy technology. Chinese Journal of Lasers. 45(12), (2018).
修俊山, 刘世明, 王琨琨 等. 基于激光诱导击穿光谱技术的铜铟镓硒纳米薄膜的分析探测研究. 中国激光. 45(12), (2018).

【8】Gatiatulina E R, Popova E V, Polyakova V S et al. Evaluation of tissue metal and trace element content in a rat model of non-alcoholic fatty liver disease using ICP-DRC-MS. Journal of Trace Elements in Medicine and Biology. 39, 91-99(2017).

【9】de Andrade C K, dos Anjos V E et al. . Determination of Cu, Cd, Pb and Cr in yogurt by slurry sampling electrothermal atomic absorption spectrometry: a case study for Brazilian yogurt. Food Chemistry. 240, 268-274(2018).

【10】Sun R, Ma G P, Duan X C et al. Determination of cadmium in seawater by chelate vapor generation atomic fluorescence spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy. 141, 22-27(2018).

【11】Sereshti H, Ataolahi S, Aliakbarzadeh G et al. Evaluation of storage time effect on saffron chemical profile using gas chromatography and spectrophotometry techniques coupled with chemometrics. Journal of Food Science and Technology. 55(4), 1350-1359(2018).

【12】Saritha D. Electrochemical analysis of tungsten bronze-type phases, W9Nb8O47 and W7Nb4O31, synthesised by sol-gel method. Materials Science and Engineering: B. 228, 218-223(2018).

【13】Feng Y, Yang J J, Fan J M et al. Investigation of laser-induced breakdown spectroscopy of a liquid jet. Applied Optics. 49(13), C70-C74(2010).

【14】Lee D H, Han S C, Kim T H et al. Highly sensitive analysis of boron and lithium in aqueous solution using dual-pulse laser-induced breakdown spectroscopy. Analytical Chemistry. 83(24), 9456-9461(2011).

【15】Wang L, Xu L, Zhou Y et al. Dual-pulse laser-induced breakdown spectroscopy of Al element in AlCl3 aqueous and mixed compound solutions. Chinese Journal of Lasers. 41(4), (2014).
王莉, 徐丽, 周彧 等. AlCl3水溶液和混合溶液中Al元素的双脉冲激光诱导击穿光谱. 中国激光. 41(4), (2014).

【16】Zhang Y W, Gao X, Zhang Y et al. Investigation of Cu concentration in the CuSO4 solution by laser induced breakdown spectroscopy. Spectroscopy and Spectral Analysis. 35(8), 2308-2311(2015).
张亚维, 高勋, 张原 等. CuSO4溶液中Cu元素浓度的激光诱导击穿光谱测量研究. 光谱学与光谱分析. 35(8), 2308-2311(2015).

【17】Yang X Y, Guo L B, Li J M et al. Laser-induced breakdown spectroscopy of liquid solutions: a comparative study on the forms of liquid surface and liquid aerosol. Applied Optics. 55(26), 7406-7411(2016).

【18】Wang C H, Dai L, Zhang X Y et al. Investigation on laser-induced breakdown spectroscopy of AlCl3 water solution. Chinese Journal of Lasers. 33(9), 1190-1194(2006).
王传辉, 戴琳, 张先燚 等. AlCl3水溶液的激光诱导击穿光谱研究. 中国激光. 33(9), 1190-1194(2006).

【19】Ohba H, Saeki M, Wakaida I et al. Effect of liquid-sheet thickness on detection sensitivity for laser-induced breakdown spectroscopy of aqueous solution. Optics Express. 22(20), 24478-24490(2014).

【20】Chen J, Li X M, Gu Y et al. Probing mesoscopic process of laser ablation in liquid by integrated method of optical beam deflection and time-resolved shadowgraphy. Journal of Colloid and Interface Science. 489, 38-46(2017).

【21】Ilyin A A, Golik S S, Babiy M Y et al. Spectral and temporal characteristics of Ba I emission in femtosecond laser-induced breakdown on the surfaces of aqueous solutions. Technical Physics Letters. 43(9), 860-862(2017).

【22】Fu Y X, Xu L, Wang L et al. An investigation on the laser-induced breakdown spectroscopy of the trace heavy metal element Pb in liquid matrix. Journal of Atomic and Molecular Physics. 35(1), 84-88(2018).
傅院霞, 徐丽, 王莉 等. 液相基质中微量金属元素Pb的激光诱导击穿光谱研究. 原子与分子物理学报. 35(1), 84-88(2018).

【23】Boussa?di S, Hannachi R, Ghalila H et al. Spatial and temporal characterization of distilled water plasma using laser-induced breakdown spectroscopy: effect of self-absorption on plasma parameters. Spectroscopy Letters. 41(8), 369-375(2008).

【24】Kumar N, Dash S, Tyagi A K et al. Dynamics of plasma expansion in the pulsed laser material interaction. Sadhana. 35(4), 493-511(2010).

【25】Aguilera J A and Aragón C. Characterization of a laser-induced plasma by spatially resolved spectroscopy of neutral atom and ion emissions. Spectrochimica Acta Part B: Atomic Spectroscopy. 59(12), 1861-1876(2004).

【26】Yal?in ?, Crosley D R, Smith G P et al. Influence of ambient conditions on the laser air spark. Applied Physics B: Lasers and Optics. 68(1), 121-130(1999).

【27】Shah M L, Pulhani A K, Gupta G P et al. Quantitative elemental analysis of steel using calibration-free laser-induced breakdown spectroscopy. Applied Optics. 51(20), 4612-4621(2012).

【28】Le H P and Cambier J L. Modeling of inelastic collisions in a multifluid plasma: excitation and deexcitation. Physics of Plasmas. 22(9), (2015).

引用该论文

Jianli Yu, Cheng Li, Guanxin Yao, Xinyan Yang, Xianyi Zhang, Xianfeng Zheng, Zhifeng Cui. Spatial Evolution Characteristics of Laser-Induced Plasma in Liquid Matrix[J]. Chinese Journal of Lasers, 2019, 46(8): 0802001

余建立, 李乘, 姚关心, 杨新艳, 张先燚, 郑贤锋, 崔执凤. 激光诱导液相基质等离子体的空间演化特性[J]. 中国激光, 2019, 46(8): 0802001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF