Chinese Optics Letters, 2020, 18 (9): 093201, Published Online: Jul. 24, 2020  

Regular uniform large-area subwavelength nanogratings fabricated by the interference of two femtosecond laser beams via cylindrical lens Download: 704次

Author Affiliations
1 State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract
Inhomogeneity and low efficiency are two important factors that hinder the wide application of laser-induced periodic surface structures. Two-beam interference is commonly used to fabricate gratings with interference periods. This study reports regular and uniform periodic ripples fabricated efficiently by the interference of two femtosecond laser beams via a cylindrical lens. The interference period is adjusted to be an integer multiple of the wavelength of a surface plasmon polariton. Regular and uniform subwavelength nanogratings (RUSNGs) on a silicon wafer of a diameter of 100 mm are fabricated with a scanning velocity of 6–9 mm/s. Bright and pure colors (including purple, blue, and red) are demonstrated on different patterns covered with RUSNGs.

Kaiqiang Cao, Long Chen, Ke Cheng, Zhenrong Sun, Tianqing Jia. Regular uniform large-area subwavelength nanogratings fabricated by the interference of two femtosecond laser beams via cylindrical lens[J]. Chinese Optics Letters, 2020, 18(9): 093201.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!