首页 > 论文 > 光学学报 > 31卷 > s1期(pp:100102--1)

Yb3+:Y3NbO7的制备、结构及发光性能

Polycrystalline Powder Preparation, Structural and Spectral Properties of Yb3+:Y3NbO7

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用固相法以Li2SO4作助熔剂制备了Yb3+:Y3NbO7多晶,通过X射线粉末衍射用Rietveld全谱拟合确定了其结构,研究了它的吸收和光致发光。Yb3+:Y3NbO7的光致发光峰位于973,1040和1083 nm;吸收谱峰位于863,975和1040 nm。Yb3+:Y3NbO7表现出强的晶场能级分裂,基态晶场分裂约为1022 cm-1。Yb3+:Y3NbO7具有比Yb3+YAG更宽吸收光谱和发射谱,有利于实现超短脉冲和可调谐激光输出,有望成为新型Yb激光材料。

Abstract

The Yb3+:Y3NbO7 polycrystalline powder is fabricated by the solid-phase method using Li2SO4 as flux. The structure of Yb3+:Y3NbO7 is determined by Retvield fitting to X-ray powder diffraction. The photoluminescence spectra of the Yb3+:Y3NbO7 power show three peaks at 975, 1040 and 1083 nm. The absorption spectra has the peaks at 863, 913, 975 and 1040 nm. The Yb3+:Y3NbO7 has relatively strong crystal field with the group 2F7/2 state splitting value 1022 cm-1. Compared with Yb3+YAG, Yb3+:Y3NbO7 with the large absorption and emission spectra bands is advantageous for tunable and ultrafast pulse laser output and will become a new promising Yb laser material.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O782

DOI:10.3788/aos201131.s100102

所属栏目:材料

基金项目:国家自然科学基金(90922003,50772112,50872135,51932005)和中国科学院知识创新工程项目(YYYJ-1002)资助课题。

收稿日期:2010-08-20

修改稿日期:2010-11-09

网络出版日期:--

作者单位    点击查看

宁凯杰:中国科学院安徽光学精密机械研究所安徽省光子器件与材料重点实验室, 安徽 合肥 230031中国科学院研究生院, 北京 100049
张庆礼:中国科学院安徽光学精密机械研究所安徽省光子器件与材料重点实验室, 安徽 合肥 230031
孙敦陆:中国科学院安徽光学精密机械研究所安徽省光子器件与材料重点实验室, 安徽 合肥 230031
殷绍唐:中国科学院安徽光学精密机械研究所安徽省光子器件与材料重点实验室, 安徽 合肥 230031

联系人作者:宁凯杰(kaijie_ning@163.com)

备注:宁凯杰(1984—),男,博士研究生,主要从事激光材料及新型光电子材料等方面的研究。

【1】Krupke W. F.. Ytterbium solid-state lasers-the first decade[J]. IEEE J. Sel. Top. Quant.. Electron., 2000, 6(6): 1287~1296

【2】Stewen C., Contag K., Larionov M. et al.. A 1-kW CW thin disc laser[J]. IEEE J. Sel. Top. Quant.. Electron., 2000, 6(4): 650~657

【3】Taira T., Saikawa J., Kobayashi T. et al.. Diode-pumped tunable Yb:YAG miniature lasers atroom temperature: modeling and experiment[J]. IEEE J. Sel. Top. Quant. Electron., 1997, 3(1): 100~104

【4】Matsushima I., Tanabashi A.. Development of high-efficiency 10 kHzmJps Yb:YAG laser forindustry[J]. Opt. Rev., 2010, 17(3): 294~299

【5】Ternane R., Ferid M., Guyot Y. et al.. Luminescent properties of Yb-doped monoclinic yttriumpoly phosphates[J]. J. Lumin., 2008, 128(3): 387~393

【6】Baer C. R. E., Krankel C., Saraceno C. J. et al.. Femtosecond thin-disk laser with 141 W of average power[J]. Opt. Lett., 2010, 35(13): 2302~2304

【7】Saikawa J., Kurimura S., Shoji I. et al.. Tunable frequency-doubled Yb:YAG microchip lasers[J]. Opt. Mater., 2002, 19(1): 169~174

【8】Boulon G., Collombet A., Brenier A. et al.. Structural and spectroscopic characterization of nominal Yb3+Ca8La2(PO4)6O2 oxyapatite single crystal fibers grown by the micro-pulling-down method[J]. Adv. Funct. Mater., 2001, 11(4): 263~270

【9】Cai L., Nino J. C.. Structure and dielectric properties of Ln3NbO7 (Ln=Nd, Gd, Dy, Er, Yb and Y)[J]. J. Euro. Ceram. Soc., 2007, 27(13-15): 3971~3976

【10】Yamamura H., Matsui K., Kakinuma K. et al.. Electrical conductivity of the systems, (Y1-xMx)3NbO7(M=Ca, Mg) and Y3Nb1-xMxO7(M′=Zr and Ce)[J]. Solid State Ionics., 1999, 123(1-4): 279~285

【11】Kobayashi H., Ogino H., Mori T. et al.. Preparation of Y3NbO7 powders with excess oxygen vacancies and conductivity of the sintered bodies[J]. J. Ceram. Soc. Jpn., 1993, 101(6): 671~674

【12】Doi Y., Harada Y., Hinatsu Y.. Crystal structures and magnetic properties of fluorite-related oxides Ln3NbO7 (Ln=lanthanides)[J]. J. Solid State Chem., 2009, 182(4): 709~715

【13】Kobayashi H., Ogino H., Mori T. et al.. High-temperature structural disorder in R3NbO7[J]. J. Ceram. Soc. Jpn., 1993, 101(6): 671~674

【14】Abe R., Higashi M., Sayama K. et al.. Photocatalytic activity of R3:MO7 and R2:Ti2O7(R=Y, Gd, La; M=Nb, Ta) for water splitting into H2 and O2[J]. J. Phys. Chem. B, 2006, 110(5): 2219~2226

【15】Walasek A., Zych E., Jian Z. et al.. Synthesis, morphology and spectroscopy of cubic Y3NbO7Er[J]. J. Lumin., 2007, 127(2): 523~530

【16】Walasek A., Zhang H., Wang S. et al.. Synthesis and up-converted luminescence of Y3NbO7Er[J]. Opt. Mater., 2007, 30(1): 188~191

【17】Rooksby H. P., White E. A. D.. Rare-earth niobates and tantalates of defect fluorite-type and weberite-type structures[J]. J. Am. Ceram. Soc., 1964, 47(2): 94~96

【18】Larson A. C., Von Dreele R. B.. General Structure Analysis System (GSAS)[R]. Los Alamos National Laboratory Report No. LAUR 86~748, 2004

【19】Gschneidner K. A., Jr., LeRoy E.. Handbook on the Physics and Chemistry of Rear Earths[M]. North-Holland, 1996, 36(23): 262

【20】Xiaodan W., Xiaodong X., Xionghui Z. et al.. Effects of Yb concentration on the spectroscopic properties of YbY3Al5O12[J]. Spectrochim. Acta Part A., 2006, 63(1): 49~54

【21】Chénais S., Duron F., Balembos F. et al.. Diode-pumped Yb:GGG laser: comparison with Yb:YAG[J]. Opt. Mater., 2003, 22(2): 99~106

引用该论文

Ning Kaijie,Zhang Qingli,Sun Dunlu,Yin Shaotang. Polycrystalline Powder Preparation, Structural and Spectral Properties of Yb3+:Y3NbO7[J]. Acta Optica Sinica, 2011, 31(s1): s100102

宁凯杰,张庆礼,孙敦陆,殷绍唐. Yb3+:Y3NbO7的制备、结构及发光性能[J]. 光学学报, 2011, 31(s1): s100102

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF