首页 > 论文 > 光谱学与光谱分析 > 30卷 > 7期(pp:1820-1824)

基于多时相航空高光谱遥感影像的冬小麦长势空间变异研究

Winter Wheat Growth Spatial Variation Study Based on Temporal Airborne High-Spectrum Images

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

精准农业技术是基于农田信息在空间和时间上存在的差异而实施的变量管理技术, 本研究以2001年~2002年度在国家精准农业研究示范基地开展的冬小麦变量施肥对比试验为基础, 获取冬小麦拔节期、 灌浆初期及乳熟期的推扫式成像光谱仪(pushbroom hyperspectral imager, PHI)航空高光谱影像数据, 提取反映冬小麦长势光谱参数, 进行变量施肥处理区与常规处理区冬小麦长势空间变异的对比。 研究发现, 变量区与对照区光谱反射率分散度最大的区域主要集中在红边及近红外反射平台的附近, 其中, 乳熟期冬小麦光谱分散度最大, 其次为拔节期和灌浆期。 通过对比不同时相冬小麦长势信息, 发现拔节期变量区作物长势空间变异程度要高于对照区, 经过变量施肥处理后, 灌浆期和乳熟期变量施肥区冬小麦长势空间变异程度低于对照区; 对冬小麦产量的分析发现, 变量区产量的总体空间变异小于对照区, 但变量区总体产量略低于对照区。 研究表明, 利用遥感影像数据, 可以及时获取作物长势的空间变异情况, 为农业管理的生产、 决策及时提供信息。

Abstract

Precision agriculture technology is defined as an information-and technology-based agriculture management system to identify, analyze and manage crop spatial and temporal variation within fields for optimum profitability, sustainability and protection of the environment. In the present study, push-broom hyperspectral image sensor (PHI) image was used to investigate the spatial variance of winter wheat growth. The variable-rate fertilization contrast experiment was carried out on the National Experimental Station for Precision Agriculture of China during 2001-2002. Three airborne PHI images were acquired during the wheat growth season of 2002. Then contrast analysis about the wheat growth spatial variation was applied to the variable-rate fertilization area and uniformity fertilization area. The results showed that the spectral reflectance standard deviation increased significantly in red edge and short infrared wave band for all images. The wheat milky stage spectral reflectance has the maximum standard deviation in short infrared wave band, then the wheat jointing stage and wheat filling stage. Then six spectrum parameters that sensitive to wheat growth variation were defined and analyzed. The results indicate that parameters spatial variation coefficient for variable-rate experiment area was higher than that of contrast area in jointing stage. However, it decreased after the variable-rate fertilization application. The parameters spatial variation coefficient for variable-rate area was lower than that of contrast area in filling and milking stages. In addition, the yield spatial variation coefficient for variable-rate area was lower than that of contrast area. However, the yield mean value for variable-rate area was lower than that of contrast area. The study showed that the crop growth spatial variance information can be acquired through airborne remote sensing images timely and exactly. Remote sensing technology has provided powerful analytical tools for precision agriculture variable-rate management.Spatial variation

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP274

基金项目:国家(863计划)项目(2006AA120108,2006AA10A308), 北京市科委重大主题项目 (D07060500860701), 北京市自然科学基金项目(4092017)和北京市农林科学院青年科研基金项目资助

收稿日期:2009-08-16

修改稿日期:2009-11-18

网络出版日期:0001-01-01

作者单位    点击查看

宋晓宇:国家农业信息化工程技术研究中心, 北京100097
王纪华:国家农业信息化工程技术研究中心, 北京100097
阎广建:北京师范大学遥感与GIS研究中心, 北京100875
黄文江:国家农业信息化工程技术研究中心, 北京100097
刘良云:中国科学院对地观测与数字地球科学中心, 北京100190

联系人作者:宋晓宇(Songxy@nercita.org.cn)

备注:宋晓宇, 女, 1973年生, 国家农业信息化工程技术研究中心副研究员

【1】WANG Mao-hua(汪懋华). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 1999, 15(1): 1.

【2】LU Deng-huai, LIU Ming-hua(陆登槐, 刘明华). Remote Sensing Application on Agriculture Engineering(遥感技术在农业工程中的应用). Beijing: Tsinghua University Press(北京: 清华大学出版社), 1997.

【3】PU Rui-liang, GONG Peng(浦瑞良, 宫鹏). Hyperspectral Remote Sensing and Its Applications(高光谱遥感及其应用). Beijing: Higher Education Press(北京: 高等教育出版社), 2000.

【4】LIU Yin-nian, XUE Yong-qi, WANG Jian-yu, et al(刘银年, 薛永祺, 王建宇, 等). Journal of Infrared and Millimeter Waves(红外与毫米波学报), 2002, 21(1): 9.

【5】ZHANG Dong-ying, HONG Jin, TANG Wei-ping, et al(张冬英, 洪津, 汤伟平, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2008, 28(10): 2455.

【6】YANG Min-hua, ZHAO Chun-jiang, ZHAO Yong-chao, et al(杨敏华, 赵春江, 赵永超, 等). Scientia Agricultura Sinica(中国农业科学), 2002, 35(6): 626.

【7】Moran M S, Inoue Y, Barnes E M. Remote Sens. Environ., 1997, 61: 319.

【8】Michio S, Tsuyoshi A. Remote Sens. Environ., 1989, 27: 119.

【9】John A. Photogrammetric Engineering & Remote Sensing, 1999, 65: 1113.

【10】XUE Xu-zhang, CHEN Li-ping, SUN Zhi-gui, et al(薛绪掌, 陈立平, 孙治贵, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2004, 20(3): 59.

【11】LI Qing-li, XUE Rong-qi, WANG Jian-yu, et al(李庆利, 薛永祺, 王建宇, 等). Journal of Infrared and Millimeter Waves(红外与毫米波学报), 2006, 25(4): 316.

【12】LI Hong-bo, SHU Rong, XUE Yong-qi(李红波, 舒嵘, 薛永祺). Journal of Infrared and Millimeter Waves(红外与毫米波学报), 2002, 21(6): 429.

【13】SONG Xiao-yu, WANG Ji-hua, XUE Xu-zhang, et al(宋晓宇, 王纪华, 薛绪掌, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2004, 20(4): 45.

引用该论文

SONG Xiao-yu,WANG Ji-hua,YAN Guang-jian,HUANG Wen-jiang,LIU Liang-yun. Winter Wheat Growth Spatial Variation Study Based on Temporal Airborne High-Spectrum Images[J]. Spectroscopy and Spectral Analysis, 2010, 30(7): 1820-1824

宋晓宇,王纪华,阎广建,黄文江,刘良云. 基于多时相航空高光谱遥感影像的冬小麦长势空间变异研究[J]. 光谱学与光谱分析, 2010, 30(7): 1820-1824

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF