首页 > 论文 > 光学学报 > 31卷 > 2期(pp:222003--1)

大数值孔径产业化极紫外投影光刻物镜设计

Design of High Numerical Aperture Projection Objective for Industrial Extreme Ultraviolet Lithography

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

极紫外光刻技术(EUVL)是半导体制造实现22 nm及以下节点的下一代光刻技术,高分辨投影物镜的设计是实现高分辨光刻的关键技术。为设计满足22 nm产业化光刻机需求的极紫外光刻投影物镜,采用6枚高次非球面反射镜,像方数值孔径达到0.3,像方视场宽度达到1.5 mm。整个曝光视场内的平均波像差均方根值(RMS)为0.0228λ,不采用任何分辨率增强技术的情况下,75 nm光学成像的焦深内,25 nm分辨力的光学调制传递函数(MTF)大于45%。在部分相干因子为0.5~0.8的照明条件下,畸变小于1.6 nm,线宽变化小于1.6%。物面到像面的距离为1075 mm,像方工作距大于30 mm。该物镜结合离轴照明或相移掩模等分辨率增强技术,能够在更大的焦深内实现22 nm光刻分辨率的光刻胶成像,满足半导体制造中22 nm节点技术对产业化极紫外光刻物镜的需求。

Abstract

Extreme ultraviolet lithography (EUVL) is the next generation lithography for the semiconductor manufacturer to achieve 22 nm node and below. Design of the projection objective is a core technology for the high-resolution lithography. An optical projection system with six high-order aspheric mirrors is presented to meet the industrial needs of the extreme ultraviolet lithography at 22 nm node. In the catoptrics embodiment of the present design, an image numerical aperture of 0.3 and a field width of 1.5 mm are obtained resulting in a working resolution of 25 nm across the exposure field, while the depth of focus is greater than 75 nm and modulation transfer function (MTF) larger than 45% without any resolution enhancement technologies. The mean wave front error of 0.0228λ (RMS) is reached. And the distortions of all field points are below 1.6 nm, CD (critical dimension) error is smaller than 1.6% while it is partial coherently illuminated (partial coherent factor 0.5~0.8). The total length of the system is 1075 nm. Image working distance is above 30 mm. Combined with resolution enhancement technologies, such as off-axis illumination or phase-shift mask, a greater depth of focus for 22 nm resolution can be achieved within the photoresist to meet extreme ultraviolet lithography lens industry need with 22 nm nodes.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN305.7

DOI:10.3788/aos201131.0222003

所属栏目:光学设计与制造

基金项目:国家科技重大专项,教育部长江学者特聘教授奖励计划,北京理工大学基础研究基金(20090442019)和北京理工大学优秀青年教师资助计划扩展项目(2010CX04020)资助课题。

收稿日期:2010-05-14

修改稿日期:2010-07-16

网络出版日期:0001-01-01

作者单位    点击查看

刘菲:北京理工大学光电学院光电成像技术与系统教育部重点实验室(筹), 北京 100081
李艳秋:北京理工大学光电学院光电成像技术与系统教育部重点实验室(筹), 北京 100081

联系人作者:刘菲(liufeicat@163.com)

备注:刘菲(1985—),女,博士研究生,主要从事极紫外光刻系统光学设计方面的研究。

【1】Mann, H. U. R, W. Ulrich. Reflective high-NA projection lenses [C]. SPIE, 2005, 5962: 332~339

【2】T. Peschel, H. Banse, C. Damm. Mounting an EUV schwarzschild microscope lens[C]. SPIE, 2005, 5962: 430~437

【3】Wang Liping, Jin Chunshui, Zhang Lichao. Two-mirror system design study of reduced projection optics for EUV lithography[J]. Opto-Electronic Engineering, 2007, 34(12): 113~117
王丽萍, 金春水, 张立超. 极紫外投影光刻两镜微缩投影系统的光学设计[J]. 光电工程, 2007, 34(12): 113~117

【4】Jin Chunshui, Ma Yueying, Pei Shu et al.. Development of elementary arrangement for exterme ultraviolet projection lithography[J]. Acta Optica Sinica, 2002, 22(7): 852~857
金春水, 马月英, 裴舒 等. 极紫外投影光刻原理装置的集成研究[J]. 光学学报, 2002, 22(7): 852~857

【5】H. Meiling, N. Buzing, K. Cummings. EUVL system: moving towards production [C]. SPIE, 2009, 7271: 727102

【6】Udo Dinger. Microlithography projection objective and projection exposure apparatus[P]. U.S. Patent US20060198029.2006-9

【7】Josephus J. M. Braat. Mirror projection system for a scanning lithographic projection apparatus, and lithographic apparatus comprising such a system [P]. U.S. Patent US, 6199991. 2001-03-13

【8】Hudyma, R. M. S. R. High numerical aperture projection system for extreme ultraviolet projection lithography[P]. U.S. Patent US, 6072852, 2000-06-06

【9】R. Hudyma. High numerical aperture ring field projection system for extreme ultraviolet lithography[P]. US, 6033079, 2000-03-07

【10】R. Hudyma. High numerical aperture ring field projection system for extreme ultraviolet lithography[P]. U.S. Patent US, 6188513, 2001-02-13

【11】R. Hudyma. High numerical aperture ring field projection system for extreme ultraviolet lithography[P]. U.S. Patent US, 6318869, 2001-11-20

【12】Josephus J. M. Braat. Mirror projection system for a scanning lithographic projection apparatus, and lithographic apparatus comprising such a system.[P]. U.S. Patent US, 6255661, 2001-07-03

【13】D. M. Williamson. High numerical aperture ring field optical reduction system[P]. U.S. Patent US, 5815310, 1998-09-29

【14】Tomowaki Takahashi. Projection optical system and exposure apparatus equipped with the projection optical system[P]. U.S. Patent US, 20040125353, 2004-07-01

【15】Li Yanqiu. Optical performance of extreme-ultraviolet lithography for 50 nm generation[J]. Acta Optica Sinica, 2004, 24(7): 865~868
李艳秋. 50 nm分辨力极端紫外光刻物镜光学性能研究[J]. 光学学报, 2004, 24(7): 865~868

【16】Yang Xiong, Xing Tingwen. Design of extreme ultraviolet lithographic objectives[J]. Acta Optica Sinica, 2009, 29(9): 2520~2523
杨雄, 邢廷文. 极紫外投影光刻物镜设计[J]. 光学学报, 2009, 29(9): 2520~2523

引用该论文

Liu Fei,Li Yanqiu. Design of High Numerical Aperture Projection Objective for Industrial Extreme Ultraviolet Lithography[J]. Acta Optica Sinica, 2011, 31(2): 0222003

刘菲,李艳秋. 大数值孔径产业化极紫外投影光刻物镜设计[J]. 光学学报, 2011, 31(2): 0222003

被引情况

【1】王君,金春水,王丽萍,郭本银,喻波. 极紫外光刻投影物镜中多层膜分析模型的建立及应用. 光学学报, 2014, 34(8): 811002--1

【2】王君,金春水,王丽萍,郭本银,喻波. 极紫外光刻投影物镜中多层膜分析模型的建立及应用. 光学学报, 2014, 34(8): 811002--1

【3】周连生,于新峰,吴志会,芮大为,张巍. 基于小物镜系统的热像差影响因素分析. 激光与光电子学进展, 2014, 51(9): 92204--1

【4】许伟才,黄玮,杨旺. 投影光刻物镜倍率的公差分析与补偿. 光学学报, 2011, 31(11): 1122003--1

【5】曹宇婷,王向朝,步扬. 极紫外投影光刻接触孔掩模的快速仿真计算. 光学学报, 2012, 32(7): 705001--1

【6】田伟,王平,王汝冬,王立朋,隋永新. 193 nm光刻投影物镜单镜支撑仿真分析及实验研究. 中国激光, 2012, 39(8): 816002--1

【7】祝文秀,金春水,匡尚奇,喻波. 提高极紫外光谱纯度的多层膜设计及制备. 光学学报, 2012, 32(10): 1031002--1

【8】王君,金春水,王丽萍,卢增雄. 极紫外光刻离轴照明技术研究. 光学学报, 2012, 32(12): 1211003--1

【9】吕博,刘伟奇,康玉思,冯睿,柳华,魏忠伦. 全球面变焦距光刻系统设计. 光学学报, 2013, 33(6): 622001--1

【10】柳青,覃亚丽,李伽,李如春. 单孤子在深聚焦系统中焦平面上的强度分布. 激光与光电子学进展, 2013, 50(6): 61101--1

【11】陈淑琼,罗亚梅,唐碧华. 异常空心光束通过大数值孔径光阑透镜后焦区电场和磁场的相位奇异特性. 光学学报, 2013, 33(s1): 114005--1

【12】曹振,李艳秋,刘菲. 16~22 nm极紫外光刻物镜工程化设计. 光学学报, 2013, 33(9): 922005--1

【13】鹿国庆,卢启鹏,彭忠琦,龚学鹏. 极紫外光学元件表面碳污染模型的建立. 光学学报, 2013, 33(12): 1234001--1

【14】王君,王丽萍,金春水,苗亮,谢耀. 极紫外光刻物镜分组可视化界面设计优化. 光学学报, 2015, 35(12): 1211001--1

【15】李艳秋,刘岩,刘丽辉. 16 nm极紫外光刻物镜热变形对成像性能影响的研究. 光学学报, 2019, 39(1): 122001--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF