Chinese Optics Letters, 2011, 9 (5): 050603, Published Online: Apr. 22, 2011  

Design procedure for photonic crystal fibers with ultra-flattened chromatic dispersion Download: 507次

Author Affiliations
1 Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Ministry of Education, Beijing 100876, China
2 College of Science, Jimei University, Xiamen 361021, China
Abstract
A simple design procedure is used to generate photonic crystal fibers (PCFs) with ultra-flattened chromatic dispersion. Only four parameters are required, which not only considerably saves the computing time, but also distinctly reduces the air-hole quantity. The influence of the air-hole diameters of each ring of hexagonal PCFs (H-PCF, including 1-hole-missing and 7-hole-missing H-PCFs), circular PCFs (C-PCF), square PCFs (S-PCF), and octagonal PCFs (O-PCF) is investigated through simulations. Results show that regardless of the cross section structures of the PCFs, the 1st ring air-hole diameter has the greatest influence on the dispersion curve followed by that of the 2nd ring. The 3rd ring diameter only affects the dispersion curve within longer wavelengths, whereas the 4th and 5th rings have almost no influence on the dispersion curve. The hole-to-hole pitch between rings changes the dispersion curve as a whole. Based on the simulation results, a procedure is proposed to design PCFs with ultra-flattened dispersion. Through the adjustment of air-hole diameters of the inner three rings and hole-to-hole pitch, a flattened dispersion of 0+-0.5 ps/(nm.km) within a wavelength range of 1.239–2.083 \mum for 5-ring 1-hole-missing H-PCF, 1.248–1.992 \mum for 5-ring C-PCF, 1.237–2.21 \mum for 5-ring S-PCF, 1.149–1.926 \mum for 5-ring O-PCF, and 1.294–1.663 \mum for 7-hole-missing H-PCF is achieved.

Huizhen Xu, Jian Wu, Yitang Dai, Cong Xu, Jintong Lin. Design procedure for photonic crystal fibers with ultra-flattened chromatic dispersion[J]. Chinese Optics Letters, 2011, 9(5): 050603.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!