首页 > 论文 > 光谱学与光谱分析 > 31卷 > 3期(pp:771-775)

应用近地成像高光谱估算玉米叶绿素含量

A Field-Based Pushbroom Imaging Spectrometer for Estimating Chlorophyll Content of Maize

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

图谱合一的近地成像高光谱是现代数字农业对田块尺度的作物长势信息进行动态监测和实时管理的需要, 是促进农业定量遥感发展的重要手段之一。 文章通过自主研制的田间扫描成像光谱仪近地获得盆栽和大田玉米的冠层高光谱影像, 从影像中精确提取玉米不同层位的叶片反射光谱并计算TCARI, OSAVI, CARI, NDVI等多种光谱植被指数, 构建玉米叶绿素含量的光谱预测模型, 并对模型进行了验证。 结果表明, 基于光谱指数MCARI/OSAVI构建的玉米植株叶绿素含量预测模型精度较高, 验证样本预测的决定系数R2=0.887, 预测均方根误差RMSE为1.8。 研究表明, 成像光谱仪在微观尺度上的作物组分光谱信息探测方面具有较大的应用潜力。

Abstract

As an image-spectrum merging technology, the field-hperspectral imaging technology is a need for dynamic monitoring and real-time management of crop growth information acquiring at field scale in modern digital agriculture, and it is also an effective approach to promoting the development of quantitative remote sensing on agriculture. In the present study, the hyperspectral images of maize in potted trial and in field were acquired by a self-development push broom imaging spectrometer (PIS). The reflectance spectra of maize leaves in different layers were accurately extracted and then used to calculate the spectral vegetation indices, such as TCARI, OSAVI, CARI and NDVI. The spectral vegetation indices were used to construct the prediction model for measuring chlorophyll content.The results showed that the prediction model constructed by spectral index of MCARI/OSAVI had high accuracy. The coefficient of determination for the validation samples was R2=0.887, and RMSE was 1.8. The study indicated that PIS had extensive application potentiality on detecting spectral information of crop components in the micro-scale.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:S127

基金项目:国家高新技术研究发展计划(863计划)项目(2006AA120108, 2006AA10A308, 2007AA10Z202)资助

收稿日期:2010-05-10

修改稿日期:2010-08-20

网络出版日期:--

作者单位    点击查看

张东彦:浙江大学农业遥感与信息技术应用研究所, 浙江 杭州 310029国家农业信息化工程技术研究中心, 北京 100097
刘镕源:国家农业信息化工程技术研究中心, 北京 100097北京师范大学地理学与遥感科学学院, 北京 100875
宋晓宇:国家农业信息化工程技术研究中心, 北京 100097
徐新刚:国家农业信息化工程技术研究中心, 北京 100097
黄文江:国家农业信息化工程技术研究中心, 北京 100097
朱大洲:国家农业信息化工程技术研究中心, 北京 100097
王纪华:浙江大学农业遥感与信息技术应用研究所, 浙江 杭州 310029国家农业信息化工程技术研究中心, 北京 100097

联系人作者:张东彦(hello-lion@hotmail.com)

备注:张东彦, 1982年生, 浙江大学农业遥感与信息技术应用所博士研究生

【1】Xujun Ye, Kenshi Sakai, Hiroshi Okamoto, et al. Computers and Electronics in Agriculture, 2008, 63(1): 13.

【2】Peng Gong, Rui Liang Pu, Greg S Biging, et al. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(6): 1355.

【3】SONG Kai-shan, ZHANG Bai, LI Fang, et al(宋开山, 张柏, 李方, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2005, 21(1): 36.

【4】Pacheco A, Bannari A, Staenz K, et al. Proceedings of the First International Symposium on Recent Advances in Quantitative Remote Sensing, 2002, 9: 210.

【5】WANG Yuan-yuan, LI Gui-cai, ZHANG Li-jun, et al(王圆圆, 李贵才, 张立军, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2010, 30(4): 1070.

【6】Chapman S C, Barreto H J. Agronomy Journal, 1997, 8(9): 557.

【7】Mullen R W, Freeman K W, Raun W R. Agronomy Journal, 2003, 9(5): 347.

【8】Mayfield A H, Trengove S P. Crop & Pasture Science, 2009, 9(60): 127.

【9】TAN Hai-zhen, LI Shao-kun, WANG Ke-ru, et al(谭海珍, 李少昆, 王克如, 等). Acta Agronomica Sinica(作物学报), 2008, 34(10): 1812.

【10】LIU Jian-gui, WU Chang-shan, ZHANG Bing, et al(刘建贵, 吴长山, 张兵, 等). Journal of Remote Sensing(遥感学报), 1999, 3(4): 290.

【11】Bin Yu, Michael I Ostland, Peng Gong, et al. IEEE Transations on Geosciences and Remote Sensing, 1999, 37(5): 2569.

【12】WANG Qiang, SHU Jiong, YIN Qiu(王强, 束炯, 尹球). Journal of Infrared and Millimeter Waves(红外与毫米波学报), 2006, 25(1): 29.

【13】Bannari D Morin, Bonn F, et al. Remote Sensing Reviews, 1995, 2(13): 95.

【14】Pacheco A, Bannari A, Staenz K, et al. Canada Journal of Remote Sensing, 2008, 34(1): 252.

【15】Patel N K, Patnaik C, Dutta S. International Journal of Remote Sensing, 2001, 22(12): 2401.

【16】Penuelas J, Filella I. Trends Plant Science, 1998, 3: 151.

【17】Pacheco A, Bannari A, Staenz K, et al. 23th Canada Symposium of Remote Sensing, 2001, 1: 281.

【18】Buschmann C, Nagel E. International Journal of Remote Sensing, 1993, 14(4): 128.

【19】Abderrazak Bannari, Shahid K Khurshid, Karl Staenz, et al. Transations on Geosciences and Remote Sensing, 2007, 10(45): 210.

【20】Haboudane D, Miller J R, Tremblay N, et al. Remote Sensing of Environment, 2002, 81(2): 416.

【21】Verstraete M M, Pinty B, Curran P J. International Journal of Remote Sensing, 1999, 20(9): 1747.

【22】Daughtry C S T, Walthall C L, Kim M S, et al. Remote Sensing of Environment, 2000, 74(2): 229.

引用该论文

ZHANG Dong-yan,LIU Rong-yuan,SONG Xiao-yu,XU Xin-gang,HUANG Wen-jiang,ZHU Da-zhou,WANG Ji-hua. A Field-Based Pushbroom Imaging Spectrometer for Estimating Chlorophyll Content of Maize[J]. Spectroscopy and Spectral Analysis, 2011, 31(3): 771-775

张东彦,刘镕源,宋晓宇,徐新刚,黄文江,朱大洲,王纪华. 应用近地成像高光谱估算玉米叶绿素含量[J]. 光谱学与光谱分析, 2011, 31(3): 771-775

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF