首页 > 论文 > 光谱学与光谱分析 > 31卷 > 4期(pp:1092-1096)

冬小麦导数光谱特征提取与缺磷胁迫神经网络诊断

Diagnosis of Phosphorus Nutrition in Winter Wheat Based on First Derivative Spectra and Radial Basis Function Neural Network

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

分别于返青期、 拔节期、 抽穗期和灌浆期采集不同磷素处理的冬小麦叶片原始高光谱数据; 之后求取其一阶导数(一阶导数光谱)并进行小波去噪处理; 通过分析原始光谱和一阶导数光谱对不同磷素处理水平的响应特征, 确定敏感波长范围并提取四种吸收面积; 将每个叶片磷素含量值对应的四种吸收面积的归一化值, 作为样本空间样本点的位置坐标(4维样本输入矢量), 对应叶片磷素含量的归一化值作为该样本点的目标输出, 二者同时提交给径向基函数神经网络。 结果表明: (1)冬小麦叶片原始光谱对叶片磷素含量变化反应敏感的波长范围为426~435 nm和669~680 nm。 (2)一阶导数光谱的敏感波长范围为481~493 nm和685~696 nm。 (3)训练后的径向基函数神经网络模型能够学习和掌握样本点与目标输出之间的线性/非线性映射关系, 并且具有一定的推广能力。

Abstract

The hyperspectral leaf reflectance in winter wheat was measured under 4 phosphorus levels at different growth stages, i.e.revival stage, jointing stage, tassel stage and grouting stage.And their first derivative of spectra were calculated and denoised by the threshold denoising method based on wavelet transform.After studying characteristics of the two kinds of spectra resulting from different phosphorus contents levels as well as correlations between leaf phosphorus contents and spectral values, sensitive wavebands and four kinds of absorption areas were extracted.Then the four kinds of absorption areas and their corresponding leaf phosphorus content were normalized and input to RBFNN.Results show that: (1) Sensitive wavebands for monitoring leaf phosphorus contents in original leaf spectra are 426~435 and 669~680 nm.(2) Sensitive wavebands in first derivative of spectra are 481~493 and 685~696 nm.(3) Trained RBFNN can learn and seize the linearity/non-linearity mapping between samples and output targets.

广告组6 - 调制器
补充资料

中图分类号:S127

基金项目:国家科技支撑计划重大项目(2006BAD03A0308), 国家自然科学基金项目(30872073); 国家(973计划)项目(2007CB407203)资助

收稿日期:2010-05-10

修改稿日期:2010-08-20

网络出版日期:--

作者单位    点击查看

刘炜:西北农林科技大学资源环境学院, 陕西 杨凌 712100
常庆瑞:西北农林科技大学资源环境学院, 陕西 杨凌 712100
郭曼:西北农林科技大学资源环境学院, 陕西 杨凌 712100
邢东兴:西北农林科技大学资源环境学院, 陕西 杨凌 712100咸阳师范学院资源环境系, 陕西 咸阳 712000
员永生:西北农林科技大学资源环境学院, 陕西 杨凌 712100

联系人作者:刘炜(york5588@nwsuaf.edu.cn)

备注:刘炜, 1978年生, 西北农林科技大学资源环境学院博士研究生

【1】Osborne S L, Schepers J S, Francis D D, et al.Agronomy Journal, 2002, 94: 1215.

【2】WANG Lei, BAI You-lu, YANG Li-ping(王磊, 白由路, 杨俐苹).Plant Nutrition and Fertilizer(植物营养与肥料学报), 2007, 13(5): 802.

【3】CHENG Yi-song, HU Chun-sheng, WANG Cheng, et al(程一松, 胡春胜, 王成, 等).Resources Science(资源科学), 2001, 23(6): 54.

【4】LIN Fen-fang, DING Xiao-dong, FU Zhi-peng(林芬芳, 丁晓东, 付志鹏).Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2009, 29(9): 2467.

【5】WANG Ji-hua, ZHAO Chun-jiang, HUANG Wen-jiang(王纪华, 赵春江, 黄文江).Base and Application of Quantitative Remote Sensing Technique in Agriculture(农业定量遥感基础与应用).Beijing: Science Press(北京: 科学出版社), 2008.141.

【6】LI Min-zan, HAN Dong-hai, WANG Xiu (李民赞, 韩东海, 王秀).Spectral Analysis Technique and Its Application(光谱分析技术及其应用).Beijing: Science Press(北京: 科学出版社), 2006.176.

【7】WANG Xiu-zhen, LI Jian-long, TANG Yan-lin, et al(王秀珍, 李建龙, 唐延林, 等).Journal of South China Agricultural University: Natural Science Edition(华南农业大学学报·自然科学版), 2004, 25(2): 17.

【8】TANG Yan-lin, WANG Ren-chao, HUANG Jing-feng, et al(唐延林, 王人潮, 黄敬峰, 等).Journal of Remote Sensing(遥感学报), 2004, 8(2): 185.

【9】ZHANG Xia, LIU Liang-yun, ZHAO Chun-jiang, et al(张霞, 刘良云, 赵春江, 等).Journal of Remote Sensing(遥感学报), 2003, 7(3): 176.

【10】CHI Guang-yu, CHEN Xin, SHI Yi, et al(迟光宇, 陈欣, 史奕, 等).Science in China: Series C: Life Sciences (中国科学C辑: 生命科学), 2009, 39(4): 413.

【11】YANG Fu-sheng(杨福生).Wavelet Analysis and Application in Engineering(小波变换的工程分析与应用).Beijing: Science Press (北京: 科学出版社), 1999.28.

引用该论文

LIU Wei,CHANG Qing-rui,GUO Man,XING Dong-xing,YUAN Yong-sheng. Diagnosis of Phosphorus Nutrition in Winter Wheat Based on First Derivative Spectra and Radial Basis Function Neural Network[J]. Spectroscopy and Spectral Analysis, 2011, 31(4): 1092-1096

刘炜,常庆瑞,郭曼,邢东兴,员永生. 冬小麦导数光谱特征提取与缺磷胁迫神经网络诊断[J]. 光谱学与光谱分析, 2011, 31(4): 1092-1096

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF