Chinese Optics Letters, 2012, 10 (1): 010201, Published Online: Aug. 29, 2011  

Probe frequency- and field intensity-sensitive coherent control effects in an EIT-based periodic layered medium

Author Affiliations
Abstract
A periodic layered medium, with unit cells consisting of a dielectric and an electromagnetically-induced transparency (EIT)-based atomic vapor, is designed for light propagation manipulation. Considering that a destructive quantum interference relevant to a two-photon resonance emerges in EIT-based atoms interacting with both control and probe fields, an EIT-based periodic layered medium exhibits a flexible frequency-sensitive optical response, where a very small variation in the probe frequency can lead to a drastic variation in reflectance and transmittance. The present EIT-based periodic layered structure can result in controllable optical processes that depend sensitively on the external control field. The tunable and sensitive optical response induced by the quantum interference of a multi-level atomic system can be applied in the fabrication of new photonic and quantum optical devices. This material will also open a good perspective for the application of such designs in several new fields, including photonic microcircuits or integrated optical circuits.

Teh-Chau Liau, Jin-Jei Wu, Jianqi Shen, Tzong-Jer Yang. Probe frequency- and field intensity-sensitive coherent control effects in an EIT-based periodic layered medium[J]. Chinese Optics Letters, 2012, 10(1): 010201.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!