Chinese Optics Letters, 2012, 10 (1): 010701, Published Online: Aug. 29, 2011  

Fiber nonlinearity mitigation by PAPR reduction in coherent optical OFDM systems via biased clipping OFDM Download: 1003次

Author Affiliations
Abstract
A new method incorporating biased clipping orthogonal frequency division multiplexing (OFDM) is presented, which mitigates fiber nonlinear effects in a long-haul coherent optical OFDM (CO-OFDM) system. Under the scheme of the method, the wanted signal carried by odd subcarriers is orthogonal to clipping noise and a Mach-Zehnder modulator (MZM) performs the optimal OFDM signal up-converter from the radio frequency (RF) domain to the optical domain. Analysis and simulation results show that fiber non-linear effects can be effectively mitigated by reducing the peak-to-average power ratio (PAPR) in biased clipping CO-OFDM system. The nonlinearity threshold (NLT) is improved by 5 dB with a reach of 240 km. With a fiber length up to 800 km, system Q value is improved by approximately 2.3, 1.2, and 0.6 dB at a chromatic dispersion of 6, 12, and 16 ps/(nm¢km), respectively. Additionally, system Q reaches the maximum when direct currect (DC) bias is equal to the mean value of the OFDM waveform.

Yaohong Hao, Yuquan Li, Rong Wang, Weiwei Huang. Fiber nonlinearity mitigation by PAPR reduction in coherent optical OFDM systems via biased clipping OFDM[J]. Chinese Optics Letters, 2012, 10(1): 010701.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!