基于数字频率锁定技术实时探测实际大气中甲烷浓度
Application of Digital Frequency Locking Techniques in Real-Time Measurement of Methane in Atmosphere
摘要
利用可调谐半导体激光吸收光谱(TDLAS)技术对气体进行长时间实时监测时,激光器波长的漂移会给测量精度造成较大的影响。为了消除这种影响,利用Lab-VIEW设计的数字比例积分微分(PID)算法和软件数字锁相,将激光频率锁定在待测气体的吸收峰上。采用1.653 μm的分布式反馈(DFB)半导体激光器作为光源,结合100 m离散型Herriot吸收池,选择空气中的甲烷作为研究对象,对系统性能进行了测试和分析。结果表明,该系统可以将激光器稳定在±0.001 cm-1范围内,对激光器的漂移起到了很好的抑制作用。系统使用二次谐波测量时1 s积分时间内检测限约为1.8×10-8体积分数,可以满足环境空气中甲烷的长时间监测。该方法可以直接应用于其他痕量气体探测、燃烧诊断等领域。
关键词
Abstract
The fluctuation of laser brings many troubles when tunable diode laser absorption spectroscopy (TDLAS) is used in the real-time measurement of gases. For eliminating this influence, a novel method, in which a digital proportion integration differentiation (PID) algorithm and a software lock-in amplifier designed by using Lab-VIEW are employed, is introduced to lock the laser to the center of the absorption line. In order to test the system, three intimate absorption lines of methane near 1.653 μm are chosen by using fiber-coupled distributed feedback (DFB) diode laser. A 24-hour continuous measurement is implemented. Relative results are presented and discussed. The detection limit is lower than 1.8×10-8 while the second harmonic signal measurement is utilized. This method can be applied to the detection of trace gases by using other long path length cells (CEAS) or combustion diagnosis.
中图分类号:O433.1
所属栏目:测量与计量
基金项目:国家863计划(2009AA06Z204)资助课题。
收稿日期:2011-04-28
修改稿日期:2011-06-01
网络出版日期:--
作者单位 点击查看
蔡廷栋:中国科学院安徽光学精密机械研究所环境光谱学研究室, 安徽 合肥 230031
汪磊:中国科学院安徽光学精密机械研究所环境光谱学研究室, 安徽 合肥 230031
谈图:中国科学院安徽光学精密机械研究所环境光谱学研究室, 安徽 合肥 230031
张为俊:中国科学院安徽光学精密机械研究所环境光谱学研究室, 安徽 合肥 230031
高晓明:中国科学院安徽光学精密机械研究所环境光谱学研究室, 安徽 合肥 230031
联系人作者:王贵师(wulixi2004@126.com)
备注:王贵师(1981—),男,博士研究生,主要从事环境光谱技术及数字信号处理技术等方面的研究。
【1】E. D. Hinkley. Laser Monitoring of the Atmosphere[M]. Berlin: Springer, 1976. 396
【2】J. Reid, D. Labrie. Second-harmonic detection with tunable diode lasers—comparison of experiment and theory[J]. Appl. Phys. B, 1981, 26(3): 203~210
【3】X. Zhou, J. B. Jeffries, R. K. Hanson. Development of a fast temperature sensor for combustion gases using a single tunable diode laser[J]. Appl. Phys. B, 2005, 81(5): 711~722
【7】J. T. C. Liu, J. B. Jeffries, R. K. Hanson. Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows[J]. Appl. Phys. B, 2004, 78(3-4): 503~511
【8】G. B. Rieker, H. Li, X. Liu et al.. A diode laser sensor for rapid, sensitive measurements of gas temperature and water vapor concentration at high temperatures and pressures[J]. Meas. Sci. Technol., 2007, 18(5): 1195~1204
【9】M. Gabrysch, C. Corsi, F. S. Pavone et al.. Simultaneous detection of CO and CO2 using a semiconductor DFB diode laser at 1.578 μm[J]. Appl. Phys. B, 1997, 65(1): 75~79
【10】T. Aizawa. Diode-laser wavelength-modulation absorption spectroscopy for quantitative in situ measurements of temperature and OH radical concentration in combustion gases[J]. Appl. Opt., 2001, 40(27): 4894~4903
【11】R. Muller, A. Weis. Laser frequency stabilization using selective reflection spectroscopy[J]. Appl. Phys. B, 1998, 66(3): 323~326
【12】Tom Ahola, Jianpei Hu, Erikki Ikonen. A digital control system for the iodine stabilized He-Ne laser[J]. Meas. Sci. Technol., 1998, 69(5): 1934~1937
【13】A. A. Kosterev, F. K. Tittel, Dmitry V. Serebryakov et al.. Applications of quartz tuning forks in spectroscopic gas sensing[J]. Rev. Sci. Instrum., 2005, 76(4): 043105
【14】K. Liu, J. Li, L. Wang et al.. Trace gas sensor based on quartz tuning fork enhanced laser photoacoustic spectroscopy[J]. Appl. Phys. B, 2009, 94(3): 527~534
【15】Haris Riris, Clinton B. Carlisle, Russell E. Warren. Kalman filtering of tunable diode laser spectrometer absorbance measurements[J]. Appl. Opt., 1994, 33(24): 5506~5508
【16】P. Werle, R. Mucke, F. Slemr. The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS)[J]. Appl. Phys. B, 1993, 57(2): 131~139
【17】G. Wysocki, Y. Bakhirkin, S. So et al.. Dual interband cascade laser based trace-gas sensor for environmental monitoring[J]. Appl. Opt., 2007, 46(33): 8202~8210
【18】A. A. Kosterev, Y. A. Bakhirkin, R. F. Curl et al.. Quartz-enhanced photoacoustic spectroscopy[J]. Opt. Lett., 2002, 27(21): 1902~1904
【19】Yury A. Bakhirkin, Anatoliy A. Kosierev, Chad Roller et al.. Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection[J]. Appl. Opt., 2004, 43(11): 2257~2266
引用该论文
Wang Guishi,Cai Tingdong,Wang Lei,Tan Tu,Zhang Weijun,Gao Xiaoming. Application of Digital Frequency Locking Techniques in Real-Time Measurement of Methane in Atmosphere[J]. Chinese Journal of Lasers, 2011, 38(10): 1008002
王贵师,蔡廷栋,汪磊,谈图,张为俊,高晓明. 基于数字频率锁定技术实时探测实际大气中甲烷浓度[J]. 中国激光, 2011, 38(10): 1008002
被引情况
【1】陈玖英,刘建国,何亚柏,许振宇,李晗,姚路,袁松,阮俊,何俊峰,阚瑞峰. 激光吸收光谱技术中扫描频率的选择. 光学学报, 2013, 33(2): 230003--1
【2】孙延光,董作人,陈迪俊,叶青,蔡海文,瞿荣辉,龚尚庆. 基于数字反馈稳频的激光瓦斯遥测技术. 中国激光, 2013, 40(4): 408002--1
【3】张锐,赵学玒,胡雅君,郭媛,刘艳丽,汪曣. 基于无吸收谱线区域检测谐波的背景消除方法. 光学学报, 2013, 33(4): 430006--1
【4】袁松,阚瑞峰,何亚柏,姚路,陈玖英,许振宇,李晗,阮俊,何俊峰,魏敏. 可调谐半导体激光吸收光谱中激光器温度补偿. 中国激光, 2013, 40(5): 515002--1
【5】徐佳,汪磊,刘江,师红星,高晓明,王璞. 1653 nm窄线宽拉曼光纤放大器. 中国激光, 2013, 40(6): 602001--1
【6】李晗,刘建国,阚瑞峰,姚路,许振宇,陈玖英,袁松,魏敏. 波长调制光谱测量系统中的数字化相敏检测实现. 中国激光, 2013, 40(11): 1115001--1
【7】胡雅君,赵学玒,张锐,郭媛,汪曣. 波长调制技术中光强调制对二次谐波线型的影响研究. 光学学报, 2013, 33(11): 1130002--1
【8】梅教旭,汪磊,谈图,刘锟,王贵师,高晓明. Raman光纤放大器在远距离遥感探测中的应用. 量子电子学报, 2016, 33(3): 311-316
【9】唐七星,张玉钧,陈 东,张 恺,何 莹,尤 坤,刘国华,鲁一冰,范博强,余冬琪. 调谐激光吸收光谱波长偏移修正算法研究. 光谱学与光谱分析, 2018, 38(11): 3328-3333
【10】许绘香,孔国利. 采用Ziegler-Nichols-PID算法的激光红外多通池压强控制系统研制. 红外与激光工程, 2020, 49(9): 20190551-20190551