首页 > 论文 > 强激光与粒子束 > 23卷 > 9期(pp:2369-2372)

中心波长2.33 μm附近CO和CH4分子的同时探测

Simultaneous trace detection of carbon monoxide and methane at 2.33 μm

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用分布反馈式半导体激光器作为探测光源,结合程长为100 m的离散型多通吸收池,采用直接吸收光谱技术,对室温下中心波长2.33 μm附近各种低体积分数的CO及混合气体(CO,CH4和N2)的直接吸收光谱进行了测量。选择CO在4 288.289 8 cm-1位置的吸收谱线和CH4在4 287.650 15 cm-1处的吸收谱线进行痕量探测,在40 698 Pa的总压力下,实验测得CO的探测极限为8.15×10-6(信噪比约为216),CH4的探测极限为18.48×10-6(信噪比约为147)。

Abstract

The spectrum of a series of low concentration carbon monoxide and mixed gas (carbon monoxide, methane and nitrogen) was obtained around 2.33 μm using a tunable distributed feedback semiconductor laser with an astigmatic mirror multipass absorption cell (optical path length 100 m) at room temperature through direct absorption technique. The absorption lines of carbon monoxide at 4 288.289 8 cm-1 and methane at 4 287.650 15 cm-1 were chosen for trace detection. At the total pressure of 40 698 Pa, the detection limits of carbon monoxide and methane were gotten respectively, i.e. 8.15×10-6 for carbon monoxide (signaltonoise ratio is about 216) and 18.48×10-6 for methane (signaltonoise ratio is about 147).

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O433.1

DOI:10.3788/hplpb20112309.2369

所属栏目:高功率激光与光学

基金项目:国家高技术发展计划项(2009AA06Z204); 安徽省自然科学基金项目(11040606M147)

收稿日期:2010-11-01

修改稿日期:2011-04-18

网络出版日期:--

作者单位    点击查看

赵辉:中国科学院 安徽光学精密机械研究所, 合肥 230031
刘锟:中国科学院 安徽光学精密机械研究所, 合肥 230031
蔡廷栋:中国科学院 安徽光学精密机械研究所, 合肥 230031徐州师范大学 物理与电子工程学院, 江苏 徐州 221116
谈图:中国科学院 安徽光学精密机械研究所, 合肥 230031
汪磊:中国科学院 安徽光学精密机械研究所, 合肥 230031
高晓明:中国科学院 安徽光学精密机械研究所, 合肥 230031

联系人作者:赵辉(zhhui08@mail.ustc.edu.cn)

备注:赵辉(1984—),男,硕士,从事多组分气体的痕量探测研究。

【1】Li Q Y, Ju Y L. Design and analysis of liquefaction process for offshore associated gas resources[J]. Applied Thermal Engineering, 2010, 30(16):25182525.

【2】Alsaqoor S, AlAjlouni M, AlQdah K, et al. Development chances of distributed energy production on small scale[J]. Jordan Journal of Mechanical and Industrial Engineering, 2010, 4(1):135142.

【3】Kininmonth B. Appin Colliery explosion reassessed[C]//Coal Operators’ Conference. 2010:299311.

【4】Satoru W, Hirotaka M, Yasushi K, et al. Transient degradation of myelin basic protein in the rat hippocampus following acute carbon monoxide poisoning[J]. Neuroscience Research, 2010, 68(3):232240.

【5】Ghada M, Nabil A M, Attia M. Effects of chromium picolinate on some hemoglobin properties and (metabolic) functions in healthy rats[J]. World Applied Sciences Journal, 2010, 9(4):351358.

【6】Elzatahry A A, Hassan M, Hassan M, et al. Experimental evaluation and numerical modeling of catalytic activity of AgFe nanoparticles systems prepared by microwave synthesis method for CO oxidation[J]. International Journal of Electrochemical Science, 2010, 5(10):14961506.

【7】Sanhueza P, Pizarro J, Vargas C, et al. Health risk estimation due to carbon monoxide pollution at different spatial levels in Santiago, Chile[J]. Environ Monit Assess, 2010, 167(1/4):165173.

【8】Fukuda M, Mishima T, Nakayama N, et al. Temperature and current coefficients of lasing wavelength in tunable diode laser spectroscopy[J]. Applied Physics B: Lasers and Optic, 2010, 100(2):377382.

【9】Sanamyan T, Simmons J, Dubinskii M. Efficient cryocooled 2.7 μm Er3+: Y2O3 ceramic laser with direct diode pumping of the upper laser level[J]. Laser Phys Lett, 2010, 7(8):569572.

【10】Bolshov M A, Kuritsyn Y A, Liger V V, et al. Measurements of the temperature and water vapor concentration in a hot zone by tunable diode laser absorption spectrometry[J]. Applied Physics B: Lasers and Optics, 2010, 100(2):397407.

【11】Farooq A, Jeffries J B, Hanson R K. Highpressure measurements of CO2 absorption near 2.7 μm: Line mixing and finite duration collision effects[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111(7/8):949960.

【12】Vanderover J, Oehlschlaeger M A. A midinfrared scannedwavelength laser absorption sensor for carbon monoxide and temperature measurements from 900 to 4 000 K[J]. Applied Physics B: Lasers and Optics, 2010, 99(1/2):353362.

【13】Liu K, Liua T G, Peng G D, et al. An investigation of an optical fibre amplifier loop for intracavity and ringdown cavity loss measurements[J]. Measurement Science and Technology, 2001, 12(7):843849.

【14】Kassia S, Chenevier M, Gianfrani L, et al. Looking into the volcano with a midIR DFB diode laser and cavity enhanced absorption spectroscopy[J]. Opt Express, 2006, 14(23):1144211452.

【15】Farooq A, Jeffries J B, Hanson R K. In situ combustion measurements of H2O and temperature near 2.5 μm using tunable diode laser absorption[J]. Measurement Science and Technology, 2008, 19(7):111.

【16】Farooq A, Jeffries J B, Hanson R K. CO2 concentration and temperature sensor for combustion gases using diodelaser absorption near 2.7 μm[J]. Applied Physics B: Lasers and Optics, 2008, 90(3/4):619628.

【17】Armstrong B H. Spectrum line profiles: The Voigt function[J]. J Quant Spectrosc Radiat Transfer, 1967, 7(1):6188.

【18】Varghese P L, Hanson R K. Collisional narrowing effects on spectral line shapes measured at high resolution[J]. Appl Opt, 1984, 23(4):23762385.

【19】RothmanL S, Jacquemart D, Barbe A, et al. The HITRAN 2008 molecular spectroscopic database[J]. J Quant Spectrosc Radiat Transfer, 2009, 110(9/10):533572.

引用该论文

Zhao Hui,Liu Kun,Cai Tingdong,Tan Tu,Wang Lei,Gao Xiaoming. Simultaneous trace detection of carbon monoxide and methane at 2.33 μm[J]. High Power Laser and Particle Beams, 2011, 23(9): 2369-2372

赵辉,刘锟,蔡廷栋,谈图,汪磊,高晓明. 中心波长2.33 μm附近CO和CH4分子的同时探测[J]. 强激光与粒子束, 2011, 23(9): 2369-2372

被引情况

【1】党敬民,于海业,宋 芳,王一丁,孙裕晶. 应用于早期火灾探测的CO传感器. 光学 精密工程, 2018, 26(8): 1876-1881

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF