首页 > 论文 > 光子学报 > 40卷 > 11期(pp:1607-1618)

高分辨和超分辨光学成像技术在空间和生物中的应用

Progress and Applications of Highresolution and Superresolution Optical Imaging in Space and Biology

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

大到天文光学望远镜观察浩瀚的宇宙, 小到光学显微镜探察细微的纳米世界, 光学成像技术在人类探索和发现未知世界奥秘的活动中扮演着至关重要的角色. 看得更远、看得更细、看得更清楚是人们不断追求的目标. 传统光学理论已证明所有经典光学系统都是一个衍射受限系统, 即光学系统空间分辨率的物理极限是由光的波长和系统的相对孔径(或数值孔径)决定的. 能否突破这个极限?能否不断提高光学系统的成像分辨率?围绕着这个问题, 本文综述了近年来开展的各种光学高分辨和超分辨成像技术, 及其在空间探测和生物领域中的应用.

Abstract

Large to observe the boundless expanse of universe with astronomical optical telescopes, small to detect the infinitesimal nanoworld with optical microscopes, optical imaging technology plays a very important role for human beings in the exploration and discovery of the mysteries of the unknown world. To see farther, to see more details and to see more clearly are people′s constantly pursuing goal. The traditional optics theory has proved that all classical optical systems are diffractionlimited, i.e., the physical limit of the spatial resolution of optical systems is determined by the light wavelength and the relative aperture (or numerical aperture) of the system. Can this diffractionlimited barrier be broken through? Is it possible to continue to improve the imaging resolution of optical systems? Around this issue, this paper reviews the recent progress of a variety of highresolution and superresolution optical imaging techniques, and their developments in the fields of space exploration and biological applications.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O439

DOI:10.3788/gzxb20114011.1607

基金项目:国家自然科学基金项(No.10874240, No. 61077005)和国家重大科学研究计划项目(No. 2012CB921900)资)

收稿日期:2011-10-22

修改稿日期:2011-11-18

网络出版日期:--

作者单位    点击查看

姚保利:中国科学院西安光学精密机械研究所 瞬态光学与光子技术国家重点实验室 高分辨光学成像技术联合研究室, 西安 710119
雷铭:中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室 高分辨光学成像技术联合研究室, 西安 710119
薛彬:中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室 高分辨光学成像技术联合研究室中国科学院西安光学精密机械研究所空间光学技术研究室, 西安 710119
郜鹏:中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室 高分辨光学成像技术联合研究室, 西安 710119
严绍辉:中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室 高分辨光学成像技术联合研究室, 西安 710119
赵惠:中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室 高分辨光学成像技术联合研究室中国科学院西安光学精密机械研究所空间光学技术研究室, 西安 710119
赵卫:中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室 高分辨光学成像技术联合研究室, 西安 710119
杨建峰:中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室 高分辨光学成像技术联合研究室中国科学院西安光学精密机械研究所空间光学技术研究室, 西安 710119
樊学武:中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室 高分辨光学成像技术联合研究室中国科学院西安光学精密机械研究所空间光学技术研究室, 西安 710119
邱跃洪:中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室 高分辨光学成像技术联合研究室中国科学院西安光学精密机械研究所空间光学技术研究室, 西安 710119
高伟:中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室 高分辨光学成像技术联合研究室中国科学院西安光学精密机械研究所空间光学技术研究室, 西安 710119
赵葆常:中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室 高分辨光学成像技术联合研究室中国科学院西安光学精密机械研究所空间光学技术研究室, 西安 710119
李英才:中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室 高分辨光学成像技术联合研究室中国科学院西安光学精密机械研究所空间光学技术研究室, 西安 710119

联系人作者:姚保利(yaobl@opt.ac.cn)

备注:姚保利(1968-),研究员,博士, 主要研究方向为信息光子学和生物光子学.

【1】BORN M, WOLF E. 杨葭荪, 译. Optics principle[M]. 7版. 北京: 电子工业出版社, 2006.

【2】RICHARDS B, WOLF E. Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system[C]. Proceedings of the Royal Society A, 1959, 253: 358379.

【3】DORN R, QUABIS S, LEUCHS G. Sharper focus for a radially polarized light beam[J]. Physical Review Letters, 2003, 91(23): 3901.

【4】ZHAO Baochang, YANG Jianfeng, WEN Desheng, et al. Overall scheme and onorbit images of Chang′e2 lunar satellite CCD stereo camera[J]. Science China: Technological Sciences, 2011, 54(9): 22372242.

【5】XUE Bin, ZHAO Baochang, YANG JianFeng, et al. Autocompensation of velocityheight ratio for Chang′e2 satellite CCD stereo camera[J]. Science China: Technological Sciences, 2011, 54(9): 22432246.

【6】刘新平, 高瞻, 邓年茂, 等. 面阵CCD作探测器的亚像元成像方法及实验[J]. 科学通报, 1999, 44(15): 16031605.

【7】LATRY C, ROUGE B. Optimized sampling for CCD instruments: the supermode scheme[C]. IEEE Proceedings IGARSS, 2000, 4: 23222324 .

【8】DOWSKI E R Jr, CATHEY W T. Extended depth of field through wavefront coding[J]. Applied Optics, 1995, 34(11): 18591866.

【9】LEE S H, PARK N C, PARK K S, et al. Upscaling image resolution of compact imaging systems using wavefront coding and a property of the pointspread function[J]. JOSA A, 2010, 27(10): 23042312.

【10】QIAO Yanfeng, LIU Kun, DUAN Xiangyong. Optical synthetic aperture imaging techniques and development[J]. Chinese Journal of Optics and Applied Optics, 2009, 2(3): 175182.
乔彦峰, 刘坤, 段相永. 光学合成孔径成像技术及发展现状[J].中国光学与应用光学, 2009, 2(3): 175182.

【11】LIANG Shitong, YANG Jianfeng, LI Xiangjuan, et al. Study of a new sparseaperture system[J]. Acta Photonica Sinica, 2010, 39(1): 148152.
梁士通, 杨建峰, 李湘眷, 等. 一种新型稀疏孔径结构的研究[J]. 光子学报, 2010, 39(1): 148152.

【12】YU Qianyang, QU Hongsong. Realization of highresolution visible earth observation on geostationary earth orbit[J]. Chinese Optics and Applied Optics, 2009, 2(1): 129.
于前洋, 曲宏松. 实现同步轨道(GEO)高分辨力对地观测的技术途径(下) [J]. 中国光学与应用光学, 2009, 2(1): 129.

【13】LU Changming, WANG Jianjun, GAO Xin, et al. A study on the theory of Fourier telescope and its improvement[J]. Journal of Spacecraft TT & C Technology, 2010, 29(2): 1720.
陆长明, 王建军, 高昕, 等. 傅里叶望远镜原理及改进研究[J].飞行器测控学报, 2010, 29(2): 1720.

【14】GIEPMANS B N, ADAMS S R, ELLISMAN M H, et al. The fluorescent toolbox for assessing protein location and function[J]. Science, 2006, 312(5771): 217224.

【15】LORD S J, LEE H L, MOERNER W E. Singlemolecule spectroscopy and imaging of biomolecules in living cells[J]. Analytical Chemistry, 82(6): 21922203.

【16】XIE X S, CHOI P J, LI G W, et al. Singlemolecule approach to molecular biology in living bacterial cells[J]. Annual Review of Biophysics, 2008, 37: 417444.

【17】PAWLEY J B. Handbook of biological confocal microscopy[M]. 3rd ed. USA: Springer, 2006.

【18】FORKEY J N, QUINLAN M E, GOLDMAN Y E. Measurement of single macromolecule orientation by total internal reflection fluorescence polarization microscopy[J]. Biophysical Journal, 2005, 89(2): 12611271.

【19】SYNGE E H. A suggested method for extending microscopic resolution into the ultramicroscopic region[J]. Philosophical Magazine, 1928, 6: 356362.

【20】BETZIG E, LEWIS A, HAROOTUNIAN A, et al. Nearfield scanning optical microscopy(NSOM)development and biophysical applications[J]. Biophysical Journal, 1986, 49(1): 269279.

【21】MOERNER W E. New directions in singlemolecule imaging and analysis[C]. Proc Natl Acad Sci, USA, 104, 2007: 1259612602.

【22】THOMPSON R E, LARSON D R, WEBB W W. Precise nanometer localization analysis for individual fluorescent probes[J]. Biophysical Journal, 2002, 82(5): 27752783.

【23】YILDIZ A, FORKEY J N, McKINNEY S A, et al. Myosin V walks handoverhand: single fluorophore imaging with 1.5 nm localization[J]. Science, 2003, 300(5628): 20612065.

【24】PERTSINIDIS A, ZHANG Y, CHU S. Subnanometre singlemolecule localization, registration and distance measurements[J]. Nature, 2010, 466(7306): 647651.

【25】BETZIG E, PATTERSON G H, SOUGRAT R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313(5793): 16421645.

【26】RUST M J, BATES M, ZHUANG X. Subdiffractionlimit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 2006, 3(10): 793795.

【27】LV Zhijian, LU Jingze, WU Yaqiong, et al. Introduction to theories of several superresolution fluorescence microscopy methods and recent advance in the field[J]. Progress in Biochemistry and Biophysics, 2009, 36(12): 16261634.
吕志坚, 陆敬泽, 吴雅琼, 等. 几种超分辨率荧光显微技术的原理和近期进展[J]. 生物化学与生物物理进展, 2009, 36(12): 16261634.

【28】HUANG B, BATES M, ZHUANG X. Superresolution uorescence microscopy[J]. Annual Review of Biochemistry, 2009, 78: 9931016.

【29】SHROFF H, GALBRAITH C G, GALBRAITH J A, et al. Livecell photoactivated localization microscopy of nanoscale adhesion dynamics[J]. Nature Methods, 2008, 5(5): 417423.

【30】PATTERSON G, DAVIDSON M, MANLEY S, et al. Superresolution imaging using singlemolecule localization[J]. Annual Review of Physical Chemistry, 2010, 61: 345367.

【31】HELL S W, WICHMANN J. Breaking the diffraction resolution limit by stimulated emission: stimulatedemissiondepletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11): 780782.

【32】KLAR T A, JAKOBS S, DYBA M, et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(15): 82068210.

【33】RITTWEGER E, HAN K Y, IRVINE S E, et al. STED microscopy reveals crystal colour centres with nanometric resolution[J]. Nature Photonics, 2009, 3: 144147.

【34】WESTPHAL V, RIZZOLI S O, LAUTERBACH M A, et al. Videorate farfield optical nanoscopy dissects synaptic vesicle movement[J]. Science, 2008, 320(5873): 246249.

【35】WILLIG K I, RIZZOLI S O, WESTPHAL V, et al. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis[J]. Nature, 2006, 440(7086): 935939.

【36】GUSTAFSSON M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 2000, 198(2): 8287.

【37】GUSTAFSSON M G L. Nonlinear structuredillumination microscopy: widefield fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(37): 1308113086.

【38】GUSTAFSSON M G L, SHAO L, CARITON P M, et al. Threedimensional resolution doubling in widefield fluorescence microscopy by structured illumination[J]. Biophysical Journal, 2008, 94(12): 49574970.

【39】SCHERMELLEH L, CARLTON P M, HAASE S, et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy[J]. Science, 2008, 320(5881): 13321336.

【40】SHAO L, ISAAC B, UZAWA S, et al. Gustafsson. I5M: widefield light microscopy with 100nmscale resolution in three dimensions[J]. Biophysical Journal, 2008, 94(12): 49714983.

【41】http://www.lynceetec.com/content/view/481/192/.

【42】MICO V, ZALEVSKY Z, FERREIRA C, et al. Superresolution digital holographic microscopy for threedimensional samples[J]. Optics Express, 2008, 16(23): 1926019270.

【43】SCHWARZ C J, KUZNETSOVA Y, BRUECK S R J. Imaging interferometric microscopy[J]. Optics Letters, 2003, 28(16): 14241426.

【44】ALLEN R D, DAVID G B, NOMARSKI G. The ZeissNomarski differential equipment for transmitted light microscopy[J]. Z Wiss Mickrosk, 1969, 69(4): 193221.

【45】FU D, OH S, CHOI W, et al. Quantitative DIC microscopy using an offaxis selfinterference approach[J]. Optics Letters, 2010, 35(14): 23702372.

【46】McINTYRE T J, MAURER C, BERNET S, et al. Differential interference contrast imaging using a spatial light modulator[J]. Optics Letters, 1999, 34(19): 29882990.

【47】McINTYRE T J, MAURER C, FASSL S, et al. Quantitative SLMbased differential interference contrast imaging[J]. Optics Express, 2010, 18(13): 1406314078.

【48】HEISE B, STIFTER D. Quantitative phase reconstruction for orthogonalscanning differential phasecontrast optical coherence tomography[J]. Optics Letters, 2009, 34(9): 13061308.

【49】ZERNIKE F. Phase contrast, a new method for the microscopic observation of transparent objects[J]. Physica, 1942, 9: Part I, 686698, Part II, 974986.

【50】POPESCU G, DEFLORES L P, VAUGHAN J C, et al. Fourier phase microscopy for investigation of biological structures and dynamics[J]. Optics Letters, 2004, 29(21): 25032505.

【51】http://www.microscopyu.com/articles/phasecontrast/phasemicroscopy.html.

【52】GAO P, YAO B, HARDER I, et al. Phaseshifting Zernike phase contrast microscopy for quantitative phase measurement[J]. Optics Letters, 2011, 36(21): 43054307.

【53】LI X, YAMAUCHI T, IWAI H, et al. Fullfield quantitative phase imaging by whitelight interferometry with active phase stabilization and its application to biological samples[J]. Optics Letters, 2006, 31(12): 18301832.

【54】MASSATSCH P, CHARRIRE F, CUCHE E, et al. Timedomain optical coherence tomography with digital holographic microscopy[J]. Applied Optics, 2005, 44(10): 18061812.

引用该论文

YAO Baoli,LEI Ming,XUE Bin,GAO Peng,YAN Shaohui,ZHAO Hui,ZHAO Wei,YANG Jianfeng,FAN Xuewu,QIU Yuehong,GAO Wei,ZHAO Baochang,LI Yingcai. Progress and Applications of Highresolution and Superresolution Optical Imaging in Space and Biology[J]. ACTA PHOTONICA SINICA, 2011, 40(11): 1607-1618

姚保利,雷铭,薛彬,郜鹏,严绍辉,赵惠,赵卫,杨建峰,樊学武,邱跃洪,高伟,赵葆常,李英才. 高分辨和超分辨光学成像技术在空间和生物中的应用[J]. 光子学报, 2011, 40(11): 1607-1618

被引情况

【1】钱路路,相里斌,吕群波,黄旻. 谱线弯曲对计算光谱成像影响的分析与仿真. 光子学报, 2013, 42(8): 897-901

【2】任晨纲,梁永辉,于起峰. 基于散斑成像技术的扩展目标高分辨率复原. 光子学报, 2014, 43(2): 210002--1

【3】曹阿秀,史立芳,石瑞英,邓启凌,杜春雷. 大视场复眼结构图像处理算法研究. 光子学报, 2014, 43(5): 510005--1

【4】高天元,董正超,赵宇,刘智颖. 视场拼接复眼成像系统结构及装调方法. 光子学报, 2014, 43(11): 1122001--1

【5】庞辉,杜春雷,邱琪,邓启凌,张满,尹韶云. 介质微球超分辨成像薄膜. 光子学报, 2015, 44(4): 426004--1

【6】李希宇,高昕,唐嘉,冯灵洁. 面向高轨目标成像的强度相干阵列优化. 光子学报, 2015, 44(6): 611002--1

【7】朱莉莉,李晖. 实验探索非靶组织光学参数对超声调制光的影响. 激光生物学报, 2014, 23(5): 390-395

【8】嵇晓强,程揭章,李琦,宫平,郭瑞鹃,于源华. 细胞工厂光学显微成像与图像处理技术. 光子学报, 2015, 44(7): 711004--1

【9】潘雷霆,胡芬,张心正,许京军. 多色单分子定位超分辨显微成像术. 光学学报, 2017, 37(3): 318010--1

【10】马昊宇,徐之海,冯华君,李奇,陈跃庭. 基于小递归卷积神经网络的图像超分辨算法. 光子学报, 2018, 47(4): 410004--1

【11】于湘华,刘超,柏晨,杨延龙,彭彤,但旦,闵俊伟,姚保利. 光片荧光显微成像技术及应用进展. 激光与光电子学进展, 2020, 57(10): 100001--1

【12】安莎,但旦,于湘华,彭彤,姚保利. 单分子定位超分辨显微成像技术研究进展及展望(特邀综述). 光子学报, 2020, 49(9): 918001-918001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF