首页 > 论文 > 中国激光 > 47卷 > 1期(pp:102004--1)

基于NSGA-Ⅱ算法的同轴送粉激光熔覆工艺多目标优化

Multi-Objective Optimization of Coaxial Powder Feeding Laser Cladding Based on NSGA-II

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

同轴送粉激光熔覆工艺的稳定性受诸多因素的影响,其工艺参数难以寻优。通过设计以工艺参数(激光功率、送粉速度、扫描速度)为输入、以反映熔覆层形貌和质量的特征参数为响应的中心复合实验,对比分析了响应曲面法的回归模型与神经网络对单道熔覆结果的预测效果。采用多目标优化算法NSGA-II对三个工艺参数进行优化求解。结果表明:采用优化后的参数进行激光熔覆的修复件表面硬度增大了17.11%,基体热影响区深度减小了13.90%,熔覆效率增大了6.10%。

Abstract

The stability of coaxial powder feeding laser cladding process is affected by many factors, which makes it difficult to estimate the optimal process parameters. This study designs a central composite experiment, which considers the process parameters (laser power, powder feeding speed, and scanning speed) as input and outputs the characteristic parameters that reflect the cladding morphology and quality. The regression model and neural network in the response surface method are applied to the prediction of the single-pass cladding results, and their effects are compared. Based on this, a multi-objective optimization algorithm, i.e., the non-dominated sorting genetic algorithm II (NSGA-II), is used to optimize the three aforementioned process parameters. The results denote that the optimized process parameters can improve the surface hardness of the repaired parts by 17.11%, reduce the depth of the base heat-affected zone by 13.90%, and improve the cladding efficiency by 6.10%.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TG665

DOI:10.3788/CJL202047.0102004

所属栏目:激光制造

基金项目:国家自然科学基金青年基金、上海市青年科技英才扬帆资助项目;

收稿日期:2019-07-29

修改稿日期:2019-09-26

网络出版日期:2020-01-01

作者单位    点击查看

赵凯:上海航天设备制造总厂有限公司, 上海 200245
梁旭东:上海航天设备制造总厂有限公司, 上海 200245
王炜:上海航天设备制造总厂有限公司, 上海 200245
杨萍:上海航天设备制造总厂有限公司, 上海 200245
郝云波:上海航天设备制造总厂有限公司, 上海 200245
朱忠良:上海航天设备制造总厂有限公司, 上海 200245

联系人作者:赵凯(zkdlut@163.com); 梁旭东(zkdlut@163.com);

备注:国家自然科学基金青年基金、上海市青年科技英才扬帆资助项目;

【1】Fu L. Opportunities and challenges facing Chinese manufacturing under new model of intelligent manufacturing [J]. Machine Tool & Hydraulics. 2016, 44(9): 161-164, 89.
伏琳. 智能制造新模式下 “中国制造” 面临的机遇和挑战 [J]. 机床与液压. 2016, 44(9): 161-164, 89.

【2】Zhang J, Wu W N, Zhao L Z. Research progress and development trend of laser cladding [J]. Hot Working Technology. 2013, 42(6): 131-134, 139.
张坚, 吴文妮, 赵龙志. 激光熔覆研究现状及发展趋势 [J]. 热加工工艺. 2013, 42(6): 131-134, 139.

【3】Liu Y N, Sun R L, Niu W, et al. Microstructure and friction and wear resistance of laser cladding composite coating on Ti811 surface [J]. Chinese Journal of Lasers. 2019, 46(1): 0102010.
刘亚楠, 孙荣禄, 牛伟, 等. Ti811表面激光熔覆复合涂层的微观组织及摩擦磨损性能 [J]. 中国激光. 2019, 46(1): 0102010.

【4】Janicki D. Laser cladding of Inconel 625-based composite coatings reinforced by porous chromium carbide particles [J]. Optics & Laser Technology. 2017, 94: 6-14.

【5】Paul C P, Mishra S K, Premsingh C H, et al. Studies on laser rapid manufacturing of cross-thin-walled porous structures of Inconel 625 [J]. The International Journal of Advanced Manufacturing Technology. 2012, 61: 757-770.

【6】Chen W J, Chen H, Li C C, et al. Microstructure and fatigue crack growth of EA4T steel in laser cladding remanufacturing [J]. Engineering Failure Analysis. 2017, 79: 120-129.

【7】Lee C, Park H, Yoo J, et al. Residual stress and crack initiation in laser clad composite layer with Co-based alloy and WC + NiCr [J]. Applied Surface Science. 2015, 345: 286-294.

【8】Wang Z, Sun W L, Huang H B, et al. Effect of ultrasonic vibrations on quality of laser cladding layer with low overlap rate [J]. Laser & Optoelectronics Progress. 2019, 56(14): 141402.
王战, 孙文磊, 黄海博, 等. 超声振动对低搭接率激光熔覆层质量的影响 [J]. 激光与光电子学进展. 2019, 56(14): 141402.

【9】Cheng W, Wu M P, Tang Y H, et al. Laser cladding process of 42CrMo surface with single-pass [J]. Laser & Optoelectronics Progress. 2019, 56(4): 041402.
程伟, 武美萍, 唐又红, 等. 42CrMo合金表面单道轨迹激光熔覆工艺研究 [J]. 激光与光电子学进展. 2019, 56(4): 041402.

【10】Aubry P, Blanc C, Demirci I, et al. Laser cladding and wear testing of nickel base hardfacing materials: influence of process parameters [J]. Journal of Laser Applications. 2017, 29(2): 022504.

【11】Zhang Z, Kovacevic R. Multiresponse optimization of laser cladding steel+VC using grey relational analysis in the Taguchi method [J]. JOM. 2016, 68(7): 1762-1773.

【12】Farahmand P, Kovacevic R. Parametric study and multi-criteria optimization in laser cladding by a high power direct diode laser [J]. Lasers in Manufacturing and Materials Processing. 2014, 1: 1-20.

【13】Xu X C, Wen H J, Wang J Y, et al. Optimization of laser cladding conditions in response surface method for repairing damaged alloy parts [J]. Chinese Journal of Vacuum Science and Technology. 2018, 38(7): 615-620.
许向川, 温海骏, 王俊元, 等. 基于响应面的装备零件再制造激光熔覆工艺参数优化 [J]. 真空科学与技术学报. 2018, 38(7): 615-620.

【14】Lei K Y, Qin X P, Liu H M, et al. Prediction on characteristics of molten pool in wide-band laser cladding based on neural network [J]. Journal of Optoelectronics·Laser. 2018, 29(11): 1212-1220.
雷凯云, 秦训鹏, 刘华明, 等. 基于神经网络的宽带激光熔覆熔池特征参数预测 [J]. 光电子·激光. 2018, 29(11): 1212-1220.

【15】Caiazzo F, Caggiano A. Laser direct metal deposition of 2024 Al alloy: trace geometry prediction via machine learning [J]. Materials. 2018, 11(3): 444.

【16】Tian J, Hou J B. FGM centrifugal casting parameters adaptive optimization with SVM [J]. Foundry Technology. 2018, 39(8): 1731-1734.
田静, 侯击波. 支持向量机的功能复合材料离心铸造参数自适应优化 [J]. 铸造技术. 2018, 39(8): 1731-1734.

【17】Sarker T K, Tang M L. A strength Pareto evolutionary algorithm for live migration of multiple interdependent virtual machines in data centers [M]. ∥Arik S, Huang T, Lai W, et al. Neural information processing. Lecture notes in computer science. Cham: Springer. 2015, 9490: 114-121.

【18】Nag K, Pal T, Pal N R. ASMiGA: an archive-based steady-state micro genetic algorithm [J]. IEEE Transactions on Cybernetics. 2015, 45(1): 40-52.

【19】Knowles J D, Corne D W. Approximating the nondominated front using the Pareto archived evolution strategy [J]. Evolutionary Computation. 2000, 8(2): 149-172.

【20】Chaube A, Benyoucef L, Tiwari M K. An adapted NSGA-2 algorithm based dynamic process plan generation for a reconfigurable manufacturing system [J]. Journal of Intelligent Manufacturing. 2012, 23(4): 1141-1155.

【21】Vardhan M V, Sankaraiah G, Yohan M. Optimization of process parameters in CNC milling for machining P20 steel using NSGA-II [J]. IOSR Journal of Mechanical and Civil Engineering. 2017, 14(3): 57-63.

引用该论文

Zhao Kai,Liang Xudong,Wang Wei,Yang Ping,Hao Yunbo,Zhu Zhongliang. Multi-Objective Optimization of Coaxial Powder Feeding Laser Cladding Based on NSGA-II[J]. Chinese Journal of Lasers, 2020, 47(1): 0102004

赵凯,梁旭东,王炜,杨萍,郝云波,朱忠良. 基于NSGA-Ⅱ算法的同轴送粉激光熔覆工艺多目标优化[J]. 中国激光, 2020, 47(1): 0102004

被引情况

【1】姚望,黄延禄,杨永强. 基于支持向量回归的定向能量沉积熔道尺寸预测. 中国激光, 2020, 47(8): 802007--1

【2】郝云波,王江,杨萍,王玉玲,梁旭东,高佳丽. 激光熔覆锡基巴氏合金的微观组织及性能. 中国激光, 2020, 47(8): 802009--1

【3】张博,文尚胜,马丙戌,焦飞宇,卢允乐,黄玮钊. 多光源模块植物光源系统的设计. 光学学报, 2020, 40(19): 1923001--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF