首页 > 论文 > 中国激光 > 47卷 > 2期(pp:207004--1)

光学相干层析显微成像的技术与应用 (特邀综述)

Optical Coherence Microscopy and Its Application (Invited)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

光学相干层析显微成像(OCM)技术是一种使用相干探测的光学显微成像技术。OCM不仅具有光学相干层析成像技术(OCT)高轴向分辨、高信噪比、无需标记的优势,而且能通过高倍物镜获得高横向分辨能力,能实现微米量级的空间分辨率。首先介绍OCM技术的基本原理和实现方案,然后详细阐述OCM技术的原理以及在国际上的研究进展。针对OCM技术中如何实现超高分辨成像、焦深限制成像深度等问题,对目前该研究领域一些先进的OCM技术进行总结。OCM技术在生物医学、材料检测等领域具有广泛的应用前景。

Abstract

Optical coherence microscopy (OCM) utilizes a coherent detection method for optical microscopy. Having advantages, such as high axial resolution, high signal-to-noise ratio, and label-free imaging in optical coherence tomography (OCT), the OCM can achieve a micron-scale spatial resolution by utilizing a high-power objective for obtaining high lateral resolution. Initially, the basic principle and implementation scheme of the OCM technology are introduced; subsequently, the principles and research progress of the OCM technology around the world are summarized. This study also examines some advanced OCM technologies considering the problems that how to realize ultra-high-resolution imaging and that the depth of focus limits the imaging depth. The OCM technology has broad application prospect in biomedicine, material detection, and other fields.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:R318.51

DOI:10.3788/CJL202047.0207004

所属栏目:生物医学光子学与激光医学

基金项目:国家重点研发计划、国家自然科学基金、浙江省自然科学基金、中央高校基本科研业务费专项资金;

收稿日期:2019-10-08

修改稿日期:2019-10-30

网络出版日期:2020-02-01

作者单位    点击查看

韩涛:浙江大学光电科学与工程学院现代光学仪器国家重点实验室, 浙江 杭州 310027
邱建榕:浙江大学光电科学与工程学院现代光学仪器国家重点实验室, 浙江 杭州 310027
王迪:浙江大学光电科学与工程学院现代光学仪器国家重点实验室, 浙江 杭州 310027
孟佳:浙江大学光电科学与工程学院现代光学仪器国家重点实验室, 浙江 杭州 310027
刘智毅:浙江大学光电科学与工程学院现代光学仪器国家重点实验室, 浙江 杭州 310027
丁志华:浙江大学光电科学与工程学院现代光学仪器国家重点实验室, 浙江 杭州 310027

联系人作者:丁志华(zh_ding@zju.edu.cn)

备注:国家重点研发计划、国家自然科学基金、浙江省自然科学基金、中央高校基本科研业务费专项资金;

【1】Swanson E A, Izatt J A, Hee M R, et al. In vivo retinal imaging by optical coherence tomography [J]. Optics Letters. 1993, 18(21): 1864-1866.

【2】Wojtkowski M, Srinivasan V, Fujimoto J G, et al. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography [J]. Ophthalmology. 2005, 112(10): 1734-1746.

【3】Chen Z Y, Shen Y, Bao W, et al. Identification of surface defects on glass by parallel spectral domain optical coherence tomography [J]. Optics Express. 2015, 23(18): 23634-23646.

【4】Dansingani K K, Balaratnasingam C, Naysan J, et al. En face imaging of pachychoroid spectrum disorders with swept-source optical coherence tomography [J]. Retina. 2016, 36(3): 499-516.

【5】Bouma B E, Villiger M, Otsuka K, et al. Intravascular optical coherence tomography [Invited] [J]. Biomedical Optics Express. 2017, 8(5): 2660-2686.

【6】Ang M, Baskaran M, Werkmeister R M, et al. Anterior segment optical coherence tomography [J]. Progress in Retinal and Eye Research. 2018, 66: 132-156.

【7】Si P J, Wang L, Xu M E. Tumor cell invasion imaging based on optical coherence tomography [J]. Chinese Journal of Lasers. 2019, 46(9): 0907003.
斯培剑, 王玲, 徐铭恩. 基于光学相干层析成像技术的肿瘤细胞侵袭成像 [J]. 中国激光. 2019, 46(9): 0907003.

【8】Yan Y Z, Ding Z H, Shen Y, et al. High-sensitive and broad-dynamic-range quantitative phase imaging with spectral domain phase microscopy [J]. Optics Express. 2013, 21(22): 25734-25743.

【9】Bao W, Ding Z H, Li P, et al. Orthogonal dispersive spectral-domain optical coherence tomography [J]. Optics Express. 2014, 22(8): 10081-10090.

【10】Shen Y, Chen Z Y, Qiu J R, et al. Research progress on parallel spectral domain optical coherence tomography technology [J]. Chinese Journal of Lasers. 2018, 45(2): 0207004.
沈毅, 陈志彦, 邱建榕, 等. 并行谱域光学相干层析成像技术的研究进展 [J]. 中国激光. 2018, 45(2): 0207004.

【11】Siddiqui M, Nam A S, Tozburun S, et al. High-speed optical coherence tomography by circular interferometric ranging [J]. Nature Photonics. 2018, 12(2): 111-116.

【12】Israelsen N M, Petersen C R, Barh A, et al. Real-time high-resolution mid-infrared optical coherence tomography [J]. Light: Science & Applications. 2019, 8: 11.

【13】Federici A, Dubois A. Full-field optical coherence microscopy with optimized ultrahigh spatial resolution [J]. Optics Letters. 2015, 40(22): 5347-5350.

【14】Schmitt J M, Yadlowsky M J, Bonner R F. Subsurface imaging of living skin with optical coherence microscopy [J]. Dermatology. 1995, 191(2): 93-98.

【15】Tripathi S, Davis B J. Toussaint K C Jr, et al. Determination of the second-order nonlinear susceptibility elements of a single nanoparticle using coherent optical microscopy [J]. Journal of Physics B: Atomic, Molecular and Optical Physics. 2011, 44(1): 015401.

【16】Srinivasan V J, Radhakrishnan H, Jiang J Y, et al. Optical coherence microscopy for deep tissue imaging of the cerebral cortex with intrinsic contrast [J]. Optics Express. 2012, 20(3): 2220-2239.

【17】Min E, Lee J, Vavilin A, et al. Wide-field optical coherence microscopy of the mouse brain slice [J]. Optics Letters. 2015, 40(19): 4420-4423.

【18】Curatolo A, Villiger M, Lorenser D, et al. Ultrahigh-resolution optical coherence elastography [J]. Optics Letters. 2016, 41(1): 21-24.

【19】Chirskaya V, Margaryants B, Zhukova V. The study of plant tissue by optical coherent microscopy method [J]. Journal of Physics: Conference Series. 2016, 735(1): 012084.

【20】-12-19[2019-10-07] . https:∥patents.glgoo.top/patent/US3013467A/en. 1961.

【21】Sandison D R, Webb W W. Background rejection and signal-to-noise optimization in confocal and alternative fluorescence microscopes [J]. Applied Optics. 1994, 33(4): 603-615.

【22】Huang D, Swanson E, Lin C, et al. Optical coherence tomography [J]. Science. 1991, 254(5035): 1178-1181.

【23】Izatt J A, Hee M R, Owen G M, et al. Optical coherence microscopy in scattering media [J]. Optics Letters. 1994, 19(8): 590-592.

【24】Fercher A F, Hitzenberger C K, Kamp G, et al. Measurement of intraocular distances by backscattering spectral interferometry [J]. Optics Communications. 1995, 117(1/2): 43-48.

【25】Leitgeb R, Hitzenberger C, Fercher A. Performance of Fourier domain vs time domain optical coherence tomography [J]. Optics Express. 2003, 11(8): 889-894.

【26】de Boer J F, Cense B, Park B H, et al. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography [J]. Optics Letters. 2003, 28(21): 2067-2069.

【27】Choma M, Sarunic M, Yang C, et al. Sensitivity advantage of swept source and Fourier domain optical coherence tomography [J]. Optics Express. 2003, 11(18): 2183-2189.

【28】Beaurepaire E, Boccara A C, Lebec M, et al. Full-field optical coherence microscopy [J]. Optics Letters. 1998, 23(4): 244-246.

【29】Dubois A, Vabre L, Boccara A C, et al. High-resolution full-field optical coherence tomography with a Linnik microscope [J]. Applied Optics. 2002, 41(4): 805-812.

【30】Li C, Zeitler J A, Dong Y, et al. Non-destructive evaluation of polymer coating structures on pharmaceutical pellets using full-field optical coherence tomography [J]. Journal of Pharmaceutical Sciences. 2014, 103(1): 161-166.

【31】Heise B, Schausberger S E, H?user S, et al. Full-field optical coherence microscopy with a sub-nanosecond supercontinuum light source for material research [J]. Optical Fiber Technology. 2012, 18(5): 403-410.

【32】Laude B, de Martino A, Drévillon B, et al. Full-field optical coherence tomography with thermal light [J]. Applied Optics. 2002, 41(31): 6637-6645.

【33】Schausberger S E, Heise B, Bernstein S, et al. Full-field optical coherence microscopy with Riesz transform-based demodulation for dynamic imaging [J]. Optics Letters. 2012, 37(23): 4937-4939.

【34】Choi W J, Jeon D I, Ahn S G, et al. Full-field optical coherence microscopy for identifying live cancer cells by quantitative measurement of refractive index distribution [J]. Optics Express. 2010, 18(22): 23285-23295.

【35】Laude B, de Martino A, Drevillon B, et al. Full-field optical coherence tomography with thermal light [J]. Applied Optics. 2002, 41(31): 6637-6645.

【36】Schmitt J M, Lee S L, Yung K M. An optical coherence microscope with enhanced resolving power in thick tissue [J]. Optics Communications. 1997, 142(4/5/6): 203-207.

【37】Aguirre A D, Hsiung P, Ko T H, et al. High-resolution optical coherence microscopy for high-speed, in vivo cellular imaging [J]. Optics Letters. 2003, 28(21): 2064-2066.

【38】Tang T, Zhao C, Chen Z Y, et al. Ultrahigh-resolution optical coherence tomography and its application in inspection of industrial materials [J]. Acta Physica Sinica. 2015, 64(17): 174201.
唐弢, 赵晨, 陈志彦, 等. 超高分辨光学相干层析成像技术与材料检测应用 [J]. 物理学报. 2015, 64(17): 174201.

【39】Marchand P J, Bouwens A, Szlag D, et al. Visible spectrum extended-focus optical coherence microscopy for label-free sub-cellular tomography [J]. Biomedical Optics Express. 2017, 8(7): 3343-3359.

【40】Yadlowsky M J, Schmitt J M, Bonner R F. Multiple scattering in optical coherence microscopy [J]. Applied Optics. 1995, 34(25): 5699-5707.

【41】Yadlowsky M J, Schmitt J M, Bonner R F. Contrast and resolution in the optical-coherence microscopy of dense biological tissue [J]. Proceedings of SPIE. 1995, 2387: 193-203.

【42】Desjardins A E, Vakoc B J, Tearney G J, et al. Speckle reduction in OCT using massively-parallel detection and frequency-domain ranging [J]. Optics Express. 2006, 14(11): 4736-4745.

【43】Chen C L, Shi W S, Deorajh R, et al. Beam-shifting technique for speckle reduction and flow rate measurement in optical coherence tomography [J]. Optics Letters. 2018, 43(24): 5921-5924.

【44】Liu S Y. Lamont M R E, Mulligan J A, et al. Aberration-diverse optical coherence tomography for suppression of multiple scattering and speckle [J]. Biomedical Optics Express. 2018, 9(10): 4919-4935.

【45】Winetraub Y, Wu C, Collins G P, et al. Upper limit for angular compounding speckle reduction [J]. Applied Physics Letters. 2019, 114(21): 211101.

【46】Karamata B, Leutenegger M, Laubscher M, et al. Multiple scattering in optical coherence tomography. II. Experimental and theoretical investigation of cross talk in wide-field optical coherence tomography [J]. Journal of the Optical Society of America A. 2005, 22(7): 1380-1388.

【47】Choi Y, Hosseini P, Choi W, et al. Dynamic speckle illumination wide-field reflection phase microscopy [J]. Optics Letters. 2014, 39(20): 6062-6065.

【48】Ogien J, Dubois A. High-resolution full-field optical coherence microscopy using a broadband light-emitting diode [J]. Optics Express. 2016, 24(9): 9922-9931.

【49】Stremplewski P, Auksorius E, Wnuk P, et al. In vivo volumetric imaging by crosstalk-free full-field OCT [J]. Optica. 2019, 6(5): 608-617.

【50】Hitzenberger C K, Baumgartner A, Drexler W, et al. Dispersion effects in partial coherence interferometry: implications for intraocular ranging [J]. Journal of Biomedical Optics. 1999, 4(1): 144-152.

【51】Fercher A, Hitzenberger C, Sticker M, et al. Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography [J]. Optics Express. 2001, 9(12): 610-615.

【52】Lee C Y, Yang P N, Tsai L H, et al. Fourier domain optical coherence tomography and digital algorithm for dispersion compensation . [C]∥Conference on Lasers and Electro-Optics, May 14-19, 2017, San Jose, California, United States. Washington, D.C.: OSA. 2017, JW2A: 49.

【53】Pan L H, Wang X Z, Li Z L, et al. Depth-dependent dispersion compensation for full-depth OCT image [J]. Optics Express. 2017, 25(9): 10345-10354.

【54】Oh W Y, Bouma B E, Iftimia N, et al. Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera [J]. Optics Express. 2006, 14(2): 726-735.

【55】Qi B, Phillip Himmer A, Maggie Gordon L, et al. Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror [J]. Optics Communications. 2004, 232: 123-128.

【56】Divetia A, Hsieh T H, Zhang J, et al. Dynamically focused optical coherence tomography for endoscopic applications [J]. Applied Physics Letters. 2005, 86(10): 103902.

【57】Hillmann D, Lührs C, Bonin T, et al. Holoscopy: holographic optical coherence tomography [J]. Optics Letters. 2011, 36(13): 2390-2392.

【58】Grebenyuk A A, Ryabukho V P. Numerical correction of coherence gate in full-field swept-source interference microscopy [J]. Optics Letters. 2012, 37(13): 2529-2531.

【59】Grebenyuk A, Federici A, Ryabukho V, et al. Numerically focused full-field swept-source optical coherence microscopy with low spatial coherence illumination [J]. Applied Optics. 2014, 53(8): 1697-1708.

【60】Yamanaka M, Teranishi T, Kawagoe H, et al. Optical coherence microscopy in 1700 nm spectral band for high-resolution label-free deep-tissue imaging [J]. Scientific Reports. 2016, 6: 31715.

【61】Yamanaka M, Hayakawa N, Nishizawa N. High-spatial-resolution deep tissue imaging with spectral-domain optical coherence microscopy in the 1700-nm spectral band [J]. Journal of Biomedical Optics. 2019, 24(7): 070502.

【62】Ding Z H, Ren H W, Zhao Y H, et al. High-resolution optical coherence tomography over a large depth range with an axicon lens [J]. Optics Letters. 2002, 27(4): 243-245.

【63】Liu L B, Liu C, Howe W C, et al. Binary-phase spatial filter for real-time swept-source optical coherence microscopy [J]. Optics Letters. 2007, 32(16): 2375-2377.

【64】Leitgeb R A, Villiger M, Bachmann A H, et al. Extended focus depth for Fourier domain optical coherence microscopy [J]. Optics Letters. 2006, 31(16): 2450-2452.

【65】Villiger M, Pache C, Lasser T. Dark-field optical coherence microscopy [J]. Optics Letters. 2010, 35(20): 3489-3491.

【66】Mehta K, Zhang P F. Yeo E L L, et al. Dark-field circular depolarization optical coherence microscopy [J]. Biomedical Optics Express. 2013, 4(9): 1683-1691.

【67】Auksorius E, Claude Boccara A. Dark-field full-field optical coherence tomography [J]. Optics Letters. 2015, 40(14): 3272-3275.

【68】Berclaz C, Goulley J, Villiger M, et al. Diabetes imaging: quantitative assessment of islets of Langerhans distribution in murine pancreas using extended-focus optical coherence microscopy [J]. Biomedical Optics Express. 2012, 3(6): 1365-1380.

【69】Rolland J P, Meemon P, Murali S, et al. Gabor domain optical coherence microscopy [J]. Proceedings of SPIE. 2010, 7556: 75560A.

【70】Rolland J P, Meemon P, Murali S, et al. Gabor-based fusion technique for optical coherence microscopy [J]. Optics Express. 2010, 18(4): 3632-3642.

【71】Canavesi C, Rolland J P. Ten years of Gabor-domain optical coherence microscopy [J]. Applied Sciences. 2019, 9(12): 2565.

【72】Cogliati A, Canavesi C, Hayes A, et al. MEMS-based handheld scanning probe with pre-shaped input signals for distortion-free images in Gabor-domain optical coherence microscopy [J]. Optics Express. 2016, 24(12): 13365-13374.

【73】An L, Li P, Shen T T, et al. High speed spectral domain optical coherence tomography for retinal imaging at 500, 000 A-lines per second [J]. Biomedical Optics Express. 2011, 2(10): 2770-2783.

【74】Jayaraman V, Jiang J, Li H, et al. OCT imaging up to 760 kHz axial scan rate using single-mode 1310 nm MEMS-tunable VCSELs with >100 nm tuning range . [C]∥CLEO: 2011-Laser Applications to Photonic Applications, May 1-6, 2011, Baltimore, Maryland, United States. Washington, D.C.: OSA. 2011, PDPB2.

【75】Choi W, Potsaid B, Jayaraman V, et al. Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source [J]. Optics Letters. 2013, 38(3): 338-340.

【76】Grulkowski I, Liu J J, Potsaid B, et al. High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source [J]. Optics Letters. 2013, 38(5): 673-675.

【77】Bonin T, Franke G, Hagen-Eggert M, et al. In vivo Fourier-domain full-field OCT of the human retina with 1.5 million A-lines/s [J]. Optics Letters. 2010, 35(20): 3432-3434.

【78】Zhang K, Kang J U. Graphics processing unit accelerated non-uniform fast Fourier transform for ultrahigh-speed, real-time Fourier-domain OCT [J]. Optics Express. 2010, 18(22): 23472-23487.

【79】Rasakanthan J, Sugden K, Tomlins P H. Processing and rendering of Fourier domain optical coherence tomography images at a line rate over 524 kHz using a graphics processing unit [J]. Journal of Biomedical Optics. 2011, 16(2): 020505.

【80】Jian Y F, Wong K, Sarunic M V. Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering [J]. Journal of Biomedical Optics. 2013, 18(2): 026002.

【81】Wieser W, Draxinger W, Klein T, et al. High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s [J]. Biomedical Optics Express. 2014, 5(9): 2963-2977.

【82】Podoleanu A G, Bradu A. Master-slave interferometry for parallel spectral domain interferometry sensing and versatile 3D optical coherence tomography [J]. Optics Express. 2013, 21(16): 19324-19338.

【83】Bradu A, Podoleanu A G. Calibration-free B-scan images produced by master/slave optical coherence tomography [J]. Optics Letters. 2014, 39(3): 450-453.

【84】Rivet S, Maria M, Bradu A, et al. Complex master slave interferometry [J]. Optics Express. 2016, 24(3): 2885-2904.

【85】Bradu A, Israelsen N M, Maria M, et al. Recovering distance information in spectral domain interferometry [J]. Scientific Reports. 2018, 8: 15445.

【86】Zhang X, Huo T C, Wang C M, et al. Optical computing for optical coherence tomography [J]. Scientific Reports. 2016, 6: 37286.

【87】Zhang W X, Zhang X, Wang C M, et al. Optical computing optical coherence tomography with conjugate suppression by dispersion [J]. Optics Letters. 2019, 44(8): 2077-2080.

【88】Ferrand A, Schleicher K D, Ehrenfeuchter N, et al. Using the NoiSee workflow to measure signal-to-noise ratios of confocal microscopes [J]. Scientific Reports. 2019, 9: 1165.

【89】Wang D P, Xia J. Optics based biomedical imaging: principles and applications [J]. Journal of Applied Physics. 2019, 125(19): 191101.

【90】Thouvenin O, Grieve K, Xiao P, et al. En face coherence microscopy [Invited] [J]. Biomedical Optics Express. 2017, 8(2): 622-639.

【91】Tankam P, He Z G, Chu Y J, et al. Assessing microstructures of the cornea with Gabor-domain optical coherence microscopy: pathway for corneal physiology and diseases [J]. Optics Letters. 2015, 40(6): 1113-1116.

【92】Tamborski S, Lyu H C, Dolezyczek H, et al. Extended-focus optical coherence microscopy for high-resolution imaging of the murine brain [J]. Biomedical Optics Express. 2016, 7(11): 4400-4414.

【93】Baumann B, Woehrer A, Ricken G, et al. Visualization of neuritic plaques in Alzheimer''''s disease by polarization-sensitive optical coherence microscopy [J]. Scientific Reports. 2017, 7: 43477.

【94】Lichtenegger A, Harper D J, Augustin M, et al. Spectroscopic imaging with spectral domain visible light optical coherence microscopy in Alzheimer''''s disease brain samples [J]. Biomedical Optics Express. 2017, 8(9): 4007-4025.

【95】Wang H, Akkin T, Magnain C, et al. Polarization sensitive optical coherence microscopy for brain imaging [J]. Optics Letters. 2016, 41(10): 2213-2216.

【96】Patrice T, Zhiguo H, Gilles T, et al. Capabilities of Gabor-domain optical coherence microscopy for the assessment of corneal disease [J]. Journal of Biomedical Optics. 2019, 24(4): 046002.

【97】Liu L, Jia Y L, Takusagawa H L, et al. Optical coherence tomography angiography of the peripapillary retina in glaucoma [J]. JAMA Ophthalmology. 2015, 133(9): 1045-1052.

【98】Virgili G, Menchini F, Casazza G, et al. Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy [J]. Cochrane Database of Systematic Reviews. 2015.

【99】Chalam K V, Sambhav K. Optical coherence tomography angiography in retinal diseases [J]. Journal of Ophthalmic and Vision Research. 2016, 11(1): 84-92.

【100】Petzold A, de Boer J F, Schippling S, et al. Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis [J]. The Lancet Neurology. 2010, 9(9): 921-932.

【101】Makhlouf H, Perronet K, Dupuis G, et al. Simultaneous optically sectioned fluorescence and optical coherence microscopy with full-field illumination [J]. Optics Letters. 2012, 37(10): 1613-1615.

【102】Grieve K, Ghoubay D, Georgeon C, et al. Three-dimensional structure of the mammalian limbal stem cell niche [J]. Experimental Eye Research. 2015, 140: 75-84.

【103】Liu X J, Liu T, Wen R, et al. Optical coherence photoacoustic microscopy for in vivo multimodal retinal imaging [J]. Optics Letters. 2015, 40(7): 1370-1373.

【104】Wang L V, Yao J J. A practical guide to photoacoustic tomography in the life sciences [J]. Nature Methods. 2016, 13(8): 627-638.

【105】Li W T, Sun X L, Wang Y, et al. In vivo quantitative photoacoustic microscopy of gold nanostar kinetics in mouse organs [J]. Biomedical Optics Express. 2014, 5(8): 2679-2685.

【106】Nie L M, Huang P, Li W T, et al. Early-stage imaging of nanocarrier-enhanced chemotherapy response in living subjects by scalable photoacoustic microscopy [J]. ACS Nano. 2014, 8(12): 12141-12150.

【107】Wu Z Y, Duan F, Zhang J D, et al. In vivo dual-scale photoacoustic surveillance and assessment of burn healing [J]. Biomedical Optics Express. 2019, 10(7): 3425-3433.

【108】Leahy C, Radhakrishnan H, Bernucci M, et al. Imaging and graphing of cortical vasculature using dynamically focused optical coherence microscopy angiography [J]. Journal of Biomedical Optics. 2016, 21(2): 020502.

【109】Marchand P J, Bouwens A, Bolmont T, et al. Statistical parametric mapping of stimuli evoked changes in total blood flow velocity in the mouse cortex obtained with extended-focus optical coherence microscopy [J]. Biomedical Optics Express. 2017, 8(1): 1-15.

【110】Liu S Y, Mulligan J A, Adie S G. Volumetric optical coherence microscopy with a high space-bandwidth-time product enabled by hybrid adaptive optics [J]. Biomedical Optics Express. 2018, 9(7): 3137-3152.

【111】Jia Y L, Tan O, Tokayer J, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography [J]. Optics Express. 2012, 20(4): 4710-4725.

【112】Gildea D. The diagnostic value of optical coherence tomography angiography in diabetic retinopathy: a systematic review [J]. International Ophthalmology. 2019, 39(10): 2413-2433.

引用该论文

Han Tao,Qiu Jianrong,Wang Di,Meng Jia,Liu Zhiyi,Ding Zhihua. Optical Coherence Microscopy and Its Application[J]. Chinese Journal of Lasers, 2020, 47(2): 0207004

韩涛,邱建榕,王迪,孟佳,刘智毅,丁志华. 光学相干层析显微成像的技术与应用[J]. 中国激光, 2020, 47(2): 0207004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF