中国激光, 2012, 39 (2): 0203003, 网络出版: 2012-01-11   

压片预置式激光多层熔覆厚纳米陶瓷涂层结合性能

Bonding Strength of Thick Nanostructured Ceramic Coating by Squash Presetting Type Laser Multi-Layer Cladding
作者单位
1 南京航空航天大学机电学院, 江苏 南京 210016
2 铜陵学院机械工程系, 安徽 铜陵 244000
摘要
采用压片预置式激光多层熔覆制备了厚纳米Al2O3-13%TiO2(质量分数)涂层,研究了涂层的微观组织和结合性能,并分析了涂层厚度对结合强度的影响。结果表明,陶瓷涂层各层之间无明显界面,过渡缓和自然,涂层内部致密、连续,基本无孔隙及贯穿性大裂纹等缺陷;涂层由等轴晶的完全熔化区和残留纳米颗粒的部分熔化区组成,并且涂层中的裂纹基本集中于部分熔化区,另外晶粒尺寸表现为上小下大的梯度过渡特征。随着涂层厚度的增加,结合强度逐渐下降,其减小的趋势为先快后慢。厚度为175 μm的试样结合强度高于78.6 MPa,而厚度为350、525、700 μm的涂层结合强度分别为66.3、47.4、36.2 MPa。
Abstract
The thick nanostructured Al2O3-13%TiO2(mass fraction) ceramic coating is prepared by squash presetting type laser multi-layer cladding. The microstructure and bonding strength of coating are investigated, and the effect of coating thickness on bonding strength is analyzed. The results show that the laser-clad ceramic coating has no obvious interface between the layers but dense, continuous structure, and there is almost no pore and large penetrating crack. The coating is composed of fully melted regions (fine equiaxed grains) and partially melted regions (remained nanoparticles). In addition, most cracks in the coating are concentrated on the partially melted region. Due to multiple heating by laser beam, the grain size of lower layer is bigger than that of upper layer. The bonding strength of coating decreases with the increase of coating thickness, and the trend is fast at first and then slow. The bonding strength of coating with a thickness of 175 μm is beyond 78.6 MPa, while those of 350, 525, 700 μm thickness coatings are 66.3, 47.4, 36.2 MPa, respectively.

王东生, 田宗军, 段宗银, 王泾文, 沈理达, 黄因慧. 压片预置式激光多层熔覆厚纳米陶瓷涂层结合性能[J]. 中国激光, 2012, 39(2): 0203003. Wang Dongsheng, Tian Zongjun, Duan Zongyin, Wang Jingwen, Shen Lida, Huang Yinhui. Bonding Strength of Thick Nanostructured Ceramic Coating by Squash Presetting Type Laser Multi-Layer Cladding[J]. Chinese Journal of Lasers, 2012, 39(2): 0203003.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!