Chinese Optics Letters, 2012, 10 (6): 061404, Published Online: Mar. 13, 2012   

Quantum limit in low-loss ring laser gyros Download: 633次

Author Affiliations
Abstract
Contrary to expectations, a measurement of the random walk in the ring laser gyro (RLG) as a function of laser power P shows that it is not consistent with the P^{-1/2} rule. In the experiment, the random walk and laser power are tested and recorded at different discharge currents. The random walk decreases with increasing power, but with a rate much less than the theoretical value according to current literature. In order to solve the inconsistency above, we derive the expression for the random walk in RLGs based on laser theory. Theoretical analysis shows that, accumulating effects of lower energy level due to its limited lifetime lead to additional quantum noise from spontaneous emission. Results show that the random walk in the RLGs consists of two components. The former decreases with increasing power according to the P^{-1/2} rule, whereas the other is power-independent. Thus far, the power-independent quantum limit has not appeared in the literature; therefore, the expressions for RLGs should be modified to describe the low-loss RLGs exactly, where the power-independent term takes a relatively larger proportion. The findings are significant to the further reduction of quantum limit in low-loss RLGs.

Zhiguo Wang, Xingwu Long, Fei Wang. Quantum limit in low-loss ring laser gyros[J]. Chinese Optics Letters, 2012, 10(6): 061404.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!