量子电子学报, 2012, 29 (2): 215, 网络出版: 2012-03-30   

棱镜全息干涉法制作二维光子晶体的研究

Fabricating two dimensional photonic crystal by prism holographic interference method
作者单位
1 郑州大学河南省激光与光电信息技术重点实验室,河南 郑州 450052
2 中国科学院半导体研究所集成光电子学国家重点实验室,北京 100086
摘要
模拟了top-cut棱镜全息干涉生成的各种光学晶格结构,为棱镜法制作光子晶体提供参考。 用全息干涉理论 分析了top-cut六棱镜多光束干涉生成的光学晶格结构,考虑了光束数目、偏振方向以及位相的不同对晶格结构的影响。 改变光束数目可以生成不同周期的正六角、斜六角光学晶格;改变光束偏振特性则影响光学晶格格点的形状; 改变光束初位相可以生成蜂窝状结构等。另外还模拟了top-cut五棱镜所生成的十重旋转对称光学准晶结构。 并且用平面波展开法计算了六角和蜂窝结构的有机光子晶体带隙图,证明了蜂窝结构更容易产生大的光子带隙。
Abstract
Different kinds of optical lattice structures fabricated by holographic interference with top-cut prisms were simulated, which provided some references for making photonic crystal by prism method. Using holographic interference theory, optical lattices prepared by interference of several light beams with top-cut hexagonal prisms were analyzed, and the influence of light beams number, polarization direction and phase to lattice structures were taken into account. Changing the number of light beams can fabricate normal and skew hexagonal optical lattice with different periods. Changing light beams’ polarization characteristics can influence the shape of lattice points of optical lattice. Changing the initial phases of light beams can fabricate honeycomb structure. And tenfold rotationally symmetric optical quasi-lattice structures fabricated with top-cut pentagonal prism were simulated. Also the band-gap diagrams of hexagonal and honeycomb polymer photonic crystal were calculated by plane wave expansion method, which demonstrated that honeycomb photonic crystal can form large photonic band-gap more easily.

刘国彬, 孙晓红, 李大海, 臧克宽, 许兴胜. 棱镜全息干涉法制作二维光子晶体的研究[J]. 量子电子学报, 2012, 29(2): 215. LIU Guo-bin, SUN Xiao-hong, LI Da-hai, ZANG Ke-kuan, XU Xing-sheng. Fabricating two dimensional photonic crystal by prism holographic interference method[J]. Chinese Journal of Quantum Electronics, 2012, 29(2): 215.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!