首页 > 论文 > 红外与毫米波学报 > 31卷 > 2期(pp:171-176)

基于传感器参数和改良CPD算法的红外与可见光图像点云配准

Infrared and visual image point set registration based on sensor parameters and refined CPD algorithm

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为实现前下视红外图像与可见光图像的有效配准,提出了一种基于传感器参数和改良CPD算法的红外与可见光图像自动配准算法.首先,利用传感器的姿态和高度信息,对前下视红外图像进行几何透视校正,消除图像间的旋转和比例缩放等差异;然后,对可见光图像和校正后的红外图像提取边缘特征点,基于相似变换模型,利用改良的CPD算法对其实现精配准.实测数据验证表明,该方法能实现对红外与可见光图像的良好配准,配准精度达到1个像素左右.

Abstract

In order to realize the FLIR and visual image registration effectively, an automatic registration algorithm based on sensor parameters and the refined CPD algorithm was proposed. Firstly, geometric rectification based on the attitude angle and height parameters was carried out to eliminate the rotation and scale discrepancies between the FLIR and visual images. Then the edges of visual image and rectified infrared image were extracted and a refined CPD algorithm was proposed for point set registration, the similarity transformation was adopted for fine image registration. Finally, the experiments on real FLIR data show that the proposed algorithm can realize the registration of infrared and visual images effectively and the registration precision can be around one pixel.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP75

基金项目:国防预研基金资助项目(9140A010107KG01)

收稿日期:2011-05-01

修改稿日期:2011-12-13

网络出版日期:--

作者单位    点击查看

王 鹏:国防科学技术大学ATR重点实验室,湖南 长沙 410073
高颖慧:国防科学技术大学ATR重点实验室,湖南 长沙 410073
王 平:国防科学技术大学ATR重点实验室,湖南 长沙 410073
曲智国:国防科学技术大学ATR重点实验室,湖南 长沙 410073
沈振康:国防科学技术大学ATR重点实验室,湖南 长沙 410073

联系人作者:王鹏(wangpengDIP@126.com)

备注:王 鹏 (1982-),男,山东日照人,博士研究生,研究方向为图像配准、成像制导及目标识别技术

【1】LIU Jing, SUN Ji-Yin, ZHU Jun-Lin, et al. FLIR scence matching algorithm for complex ground target[J] Application Research of Computers(刘婧,孙继银,朱俊林,等.复杂地面目标前视红外景象匹配算法.计算机应用研究),2010,27(1):350352.

【2】YUAN Jin-Sha, ZHAO Zhen-Bing, GAO Qiang, et al. Review and prospect on infrared/visible image registration[J]. Laser & Infrared(苑津莎,赵振兵,高强,等.红外与可见光图像配准研究现状与展望.激光与红外),2009,39(7):693699.

【3】Lee J H, Kim Y S, Lee D, et al. Robust CCD and IR image registration using gradient-based statistical information[J]. IEEE Signal Processing Letters,2010,17(4):347350.

【4】Makrogiannis S, Bourbakis N G. Efficient registration of multitemporal and multisensor aerial images based on alignment of nonparametric edge features[J]. Journal of Electronic Imaging,2010,19(1):115.

【5】Hrkac T, Kalafati Z, Krapac J. Infrared-visual image registration based on corners and Hausdorff distance[J]. Image Analysis,2007,4522:383392.

【6】Myronenko A, Song X. Point set registration: Coherent point drifts[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32:22622275.

【7】CHENG Hong ,WANG Zhi-Qiang ,ZHANG Yao-Yu. Research on geometric rectification of aerial images[J]. Journal of Northeast Normal University(程红,王志强,张耀宇.东北师大学报),2009,41(3):5054.

【8】Kennedy J, Eberhart R. Particle swarm optimization[J]. Neural Networks ,Proceedings of IEEE.1995,4:19421948.

【9】Shi Y, Eberhart R. A modified particle swarm optimizer[J]. Evolutionary Computation, Proceedings of IEEE.1998,5:6973.

引用该论文

WANG Peng,GAO Ying-Hui,WANG Ping,QU Zhi-Guo,SHEN Zhen-Kang. Infrared and visual image point set registration based on sensor parameters and refined CPD algorithm[J]. Journal of Infrared and Millimeter Waves, 2012, 31(2): 171-176

王 鹏,高颖慧,王 平,曲智国,沈振康. 基于传感器参数和改良CPD算法的红外与可见光图像点云配准[J]. 红外与毫米波学报, 2012, 31(2): 171-176

被引情况

【1】刘松林,孙刚,牛照东,张江伟,陈曾平. 基于相对相位直方图的数字表面模型数据与遥感图像配准. 光学 精密工程, 2014, 22(6): 1696-1705

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF