首页 > 论文 > 强激光与粒子束 > 24卷 > 2期(pp:297-300)

XFEL飞秒同步与定时系统中光纤长度变化的数字化监测

Digital monitoring for length variation of optical fibers in femtosecond timing and synchronization system of XFEL

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

分析了X射线自由电子激光装置对飞秒同步定时系统的技术需求。系统中采用光纤来传输定时/相位信息。而光纤的光长度会随温度的慢漂而改变,因此通过对比实验研究了温度慢漂对光纤长度变化的影响。研制了基于现场可编程门阵列(FPGA)的数字化相位和幅度检测器对光纤长度变化进行数据监测。百米光纤在典型昼夜温差下导致的时间延迟约6 ps。结果显示此数字化相位和幅度检测器可以用于飞秒同步定时系统的长度变化监测和稳定控制系统当中。

Abstract

The requirements for the femtosecond timing and synchronization (fs T&S) system in an X-ray free electron laser (XFEL) facility are analyzed. The timing/phase distribution method using optical fiber is adopted. Since the optical length of the fiber changes as the temperature drifts, the influence of temperature drift on the length variation of the fiber is studied in comparative experiments. An FPGA-based digital phase/amplitude detector is designed to record the data of the length variation. For a 100-meter-long fiber, the timing drift caused by length variation is 6 ps (peak-peak value) over 24 hours. The result shows the digital phase/amplitude detector could be used for length variation monitoring and stabilization of the fs T&S system.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN248.6

DOI:10.3788/hplpb20122402.0297

所属栏目:高功率激光与光学

基金项目:supported by the Knowledge Innovation Program of Chinese Academy of Sciences

收稿日期:2011-08-10

修改稿日期:2011-10-23

网络出版日期:--

作者单位    点击查看

马新朋:中国科学院 高能物理研究所, 北京 100049中国科学院 研究生院, 北京 100049
裴国玺:中国科学院 高能物理研究所, 北京 100049
刘波:中国科学院 上海应用物理研究所, 上海 201800
王光伟:中国科学院 高能物理研究所, 北京 100049
邱丰:中国科学院 高能物理研究所, 北京 100049中国科学院 研究生院, 北京 100049

联系人作者:Ma Xinpeng(maxp@ihep.ac.cn)

备注:Ma Xinpeng(1984-), male, Ph.D., engaged in low-level RF and optics development

【1】Kim J, Ludwig F, Chen J, et al. Femtosecond synchronization and stabilization techniques[C]//Proceedings of the 28th International Free Electron Laser Conference. 2006:287-290.

【2】Hunziker S. Layout of the PSI 250 MeV injector synchronization system and latest results[C/R]//Reports of the 2nd Timing and Synchronization Workshop. 2009

【3】Wilcox R. Recent results of RF synchronization at LBL[C/R]//Reports of the 2nd Timing and Synchronization Workshop. 2009

【4】Ferianis M, Byrd J, Kaertner F X, et al. FERMI@Elettra timing system: design and recent synchronization achievements[C]//Proceedings of DIPAC2007. 2007:334-336.

【5】Loehl F, Arsov V, Felber M, et al. Observation of 40 fs synchronization of electron bunches for FELs[C]//Proceedings of FEL08. 2008:490-493.

【6】Liu Rong. FPGA-based amplitude and phase detection in DLLRF[J]. Chinese Physics C, 2009, 33(7):594.

【7】Jiang Yubo, You Siqing, Cheng Baoping, et al. Software radio principle and engineering application[M]. Beijing: China Machine Press, 2006:13-248.(in Chinese)

【8】Meyer-Baese U. Digital signal processing with field programmable gate arrays[M]. Berlin: Springer Press, 2007:53-335.

【9】Altera Corporation. Embedded operation systems running on NiosII CPU[OL]. http://www.nioswiki.com.

【10】Loehl F. Optical synchronization of a free-electron laser with femtosecond precision[D]. Hamburg: University of Hamburg, 2009:81-84.

引用该论文

Ma Xinpeng,Pei Guoxi,Liu Bo,Wang Guangwei,Qiu Feng. Digital monitoring for length variation of optical fibers in femtosecond timing and synchronization system of XFEL[J]. High Power Laser and Particle Beams, 2012, 24(2): 297-300

马新朋,裴国玺,刘波,王光伟,邱丰. XFEL飞秒同步与定时系统中光纤长度变化的数字化监测[J]. 强激光与粒子束, 2012, 24(2): 297-300

被引情况

【1】马春阳,宋有建,刘新宇,李 晶,刘友永,胡明列,王清月. 面向XFEL的km级光纤链路的fs精度时钟分布. 强激光与粒子束, 2016, 28(5): 55102--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF