首页 > 论文 > 光学 精密工程 > 20卷 > 4期(pp:873-879)

自适应滤波在近红外无创生化分析中的应用

Application of adaptive filter to noninvasive biochemical examination by near infrared spectroscopy

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出用血流容积差光谱相减法来消除近红外无创生化分析中组织背景的干扰。为提高光谱相减中所需获得的脉搏波近红外光谱信号的信噪比,研究了自适应滤波处理方法。介绍了最小均方算法(LMS)自适应滤波的基本原理,在此基础上提出了一种适用于处理本实验脉搏波光谱信号的自适应滤波方法;采用实验室自行研制的16元近红外脉搏波采集系统,获得人体脉搏波光谱信号;最后,利用提出的自适应滤波方法处理脉搏波光谱信号并分析其滤波效果。结果表明,利用该方法处理采集的脉搏波信号,可使血流容积光谱相减后血液光谱吸光度噪声由800 μAU降低至12 μAU,相邻波长的脉搏波相关系数由0.994 0提高至0.999 9。分析结果说明该自适应滤波方法可以有效地应用于近红外无创生化分析中。

Abstract

Subtracted blood volume spectrometry was employed to the noninvasive biochemical examination with near infrared spectroscopy(NIRS) to eliminate the influence of tissues.To raise the Signal to Noise Ratio(SNR) of the NIRS pulse wave signal needed by the spectral subtraction, an effective adaptive filter method was proposed to process the pulse wave signal. The principles of Least Mean Square(LMS) adaptive filter were described, and a new adaptive filtering way fit for the pulse wave signal of this experiment was proposed. Then, a 16-pixel near-infrared pulse wave acquisition system made by ourselves was used to collect the pulse wave signals of human body. Finally, the proposed adaptive filtering way was used to process the NIRS pulse wave signals and analyze the results. The result shows that the noise level of blood spectrum has reduced from 800 μAU to 12 μAU after spectral subtraction by using the proposed method, and the related coefficient of pulse wave of adjacent wavelength has raised from 0.994 0 to 0.999 9. The analysed result verifies that the method is effective in the NIR noninvasive biochemical examination area.

投稿润色
补充资料

中图分类号:O657.33;Q503

DOI:10.3788/ope.20122004.0873

所属栏目:信息科学

基金项目:国家自然科学基金资助项目(No.60878052,60938002,61078038);中国科学院知识创新工程领域前沿资助项目(No.Y00232Q100);应用光学国家重点实验室开放基金资助项目(No.Y1Q03FQ113)

收稿日期:2011-03-15

修改稿日期:2011-04-08

网络出版日期:--

作者单位    点击查看

卢启鹏:中国科学院 长春光学精密机械与物理研究所 应用光学国家重点实验室,吉林 长春 130033
陈丛:中国科学院 长春光学精密机械与物理研究所 应用光学国家重点实验室,吉林 长春 130033中国科学院 研究生院,北京 100039
彭忠琦:中国科学院 长春光学精密机械与物理研究所 应用光学国家重点实验室,吉林 长春 130033

联系人作者:卢启鹏(luqipeng@126.com)

备注:卢启鹏(1964-),男,黑龙江齐齐哈尔人,研究员,博士生导师,1987年于浙江大学获得学士学位,1990年于中国科学院长春光学精密机械与物理研究所获硕士学位,主要从事现代光谱技术与光谱仪器等方面的研究。

【1】陈星旦.近红外光谱无创生化检验的可能性[J]. 光学 精密工程,2008,16(5):760-762.
CHEN X D. The possibility of noninvasive near-infrared biochemical analysis[J]. Opt. Precision Eng., 2008,16(5):760-762 . (in Chinese)

【2】丁海泉,卢启鹏,王动民,等.近红外光谱无创血糖检测中有效信号提取方法的研究[J].光谱学与光谱分析,2010,30(1): 50-53.
DING H Q, LU Q P, WANG D M, et al.. Research on noninvasive near-infrared spectral detection and effective signal extraction[J]. Spectroscopy and Spectral Analysis, 2010,30(1):50-53 . (in Chinese)

【3】WILLIAMS P, NORRIS K. Near-Infrared Technology in the Agricultural and Food Industries [M]. 2nd ed. American Association of Ceral Chemists,2001.

【4】OSBONEB G. Practical NIR Spectroscopy with applications in food and beverage analysis[M]. 2nd ed. An imprint of Pearson Education, 1993.

【5】SIESLER H W, OZAKI Y, KAWATA S, et al..Near-infrared Spectroscopy Principles, Instruments, Applications [M]. Wiley-Vch Verlag Gmb H, 2002.

【6】陆婉珍.现代近红外光谱分析技术[M].2版.北京:中国石化出版社,2007.
LU W ZH. Modern Near Infrared Spectroscopy Analytical Technology [M]. 2nd ed. Chinese Petrochemical Press, 2007. (in Chinese)

【7】刘蓉,徐可欣,陈文亮,等. 光学无创血糖检测中的主要问题及研究进展[J].中国科学G辑:物理学 力学 天文学,2007,37(增):124-131.
LIU R, XU K X, CHEN W L, et al.. Primal problem and headway of optics noninvasive glucose sensing[J]. China Science:Physics Mechanics Astronomy, 2007,37(Supp.): 124-131 .(in Chinese)

【8】MARUO K. In vivo noninvasive measurement of blood glucose by nearinfrared diffuse-reflectance spectroscopy [J]. Applied Spectroscopy, 2003,57(10):1236-1244.

【9】LEE T W. Independent Component Analysis-Theory and Applications[M]. Kluwer Academic Publishers,1998.

【10】GIROLAMI M. Self—Organising Neural Networks—Independent Component Analysis and Blind Source Separation[M]. Atheneum Press Ltd,1999.

【11】姜印平,李艳文.基于提升方法的脉搏波信号处理[J]. 计算机仿真,2006,23(7):98-100.
JIANG Y P, LI Y W. The pulse wave signal processing based on a lifting way[J]. Computer Simulation, 2006,23(7):98-100. (in Chinese)

【12】刘艳丽.基于形态滤波的人体脉搏信号去噪处理[J]. 安徽建筑工业学院学报,2010,18(5):78-81.
LIU Y L. Denoising human pulse signals based on the morphological filter[J]. Anhui Institute Joural of architecture, 2010,18(5):78-81. (in Chinese)

【13】CHARLES F P. An analysis of Kalman filtering model errors[J]. IEEE Trans Automatic Control,1968:699-702.

【14】KALMAN. A new approach to linear filtering and prediction problems[J].Transactions of the ASME—Journal of Basic Engineering,1960,82:35-45.

【15】黎旭,孙静.基于LMS自适应滤波的噪声抵消[J].云南民族学院学报,2000,9(3):134-136.
LI X, SUN J. The noise cancellation based on LMS adaptive filtering[J]. Journal of Yunnan Nationalities University, 2000,9(3):134-136. (in Chinese)

【16】FARHANG B. Fast LMS/Newton algorithm based on auto-regressive modeling and their application to acoustic echo cancellation[J]. IEEE Trans. on Signal Processing,1997,45(8):1987-2000.

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF