首页 > 论文 > 中国激光 > 39卷 > 7期(pp:715001--1)

水气含量对基于QEPAS甲烷气体探测性能的影响

Impact of Water on Quartz Enhanced Photo-Acoustic Absorption Spectroscopy Methane Senor Performance

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

由于气体的湿度对分子振动弛豫有着较大的影响,利用石英音叉增强型光声光谱(QEPAS)技术作为甲烷气体传感,在实际应用中,空气的水气浓度变化将会使光声测量气体浓度的信号强度发生变化。实验中采用鼓泡法结合湿度计来改变探测气体中的湿度,测量了常压下1.653 μm波长处甲烷的二次谐波信号,系统地研究了探测气体中水气浓度的变化对石英音叉Q值、共振频率f0等参数的影响。实验结果表明,水气对基于QEPAS技术甲烷气体传感器的实际应用有着很大的影响,主要表现在甲烷分子振动弛豫和探测系统性能两个方面。当实际大气中绝对湿度为2.34%时,获得的系统最小可探测质量浓度为0.57 mg/m3。

Abstract

The accuracy of measurement is affected by the variation of water vapor concentration when a quartz enhanced photo-acoustic spectroscopy (QEPAS) is used for real-time trace-gas monitoring. A QEPAS based methane sensor is developed at 1.653 μm and the influence of water vapor on the performances of QEPAS methane sensor including second harmonic signal, resonance frequency, Q factor are investigated experimentally. Measurements are carried out under different absolute humidities which are obtained by bubbling method combined with hygrometer at atmosphere pressure. The results suggest that the water vapor could impact both on relaxation time of methane and the parameters of quarts tuning fork in practical application. The smallest detective mass concentration of the sensor is found to be about 0.57 mg/m3 at different atmosphere pressures with an absolute humidity of 2.34%.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O433.1

DOI:10.3788/cjl201239.0715001

所属栏目:光谱学

责任编辑:李文喆  信息反馈

基金项目:国家自然科学基金(41175036)和安徽省自然科学基金(11040606M147)资助课题。

收稿日期:2012-02-09

修改稿日期:2012-03-22

网络出版日期:--

作者单位    点击查看

孙善文:中国科学院安徽光学精密机械研究所大气物理化学研究室, 安徽 合肥 230031
易红明:中国科学院安徽光学精密机械研究所大气物理化学研究室, 安徽 合肥 230031
王贵师:中国科学院安徽光学精密机械研究所大气物理化学研究室, 安徽 合肥 230031
汪磊:中国科学院安徽光学精密机械研究所大气物理化学研究室, 安徽 合肥 230031
谈图:中国科学院安徽光学精密机械研究所大气物理化学研究室, 安徽 合肥 230031
刘锟:中国科学院安徽光学精密机械研究所大气物理化学研究室, 安徽 合肥 230031
高晓明:中国科学院安徽光学精密机械研究所大气物理化学研究室, 安徽 合肥 230031

联系人作者:孙善文(sinosun@mail.ustc.edu.cn)

备注:孙善文(1988—),男,硕士研究生,主要从事高灵敏度光谱技术及应用等方面的研究。

【1】A. A. Kosterev, Yu. A. Bakhirkin, R. F. Curl et al.. Quartz-enhanced photoacoustic spectroscopy[J]. Opt. Lett., 2002, 27(21): 1902~1904

【2】A. A. Kosterev, F. K. Tittel. Ammonia detection by use of quartz-enhanced photoacoustic spectroscopy with a near-IR telecommunication diode laser[J]. Appl. Opt., 2004, 43(33): 6213~6217

【3】R. Lewicki, G. Wysocki, A. A. Kosterev et al.. Carbon dioxide and ammonia detection using 2 μm diode laser based quartz-enhanced photoacoustic spectroscopy[J]. Appl. Phys. B, 2007, 87(1): 157~162

【4】A. A. Kosterev, T. S. Mosely, F. K. Tittel. Impact of humidity on quartz-enhanced photoacoustic spectroscopy based detection of HCN[J]. Appl. Phys. B, 2006, 85(2): 295~300

【5】S. Schilt, A. A. Kosterev, F. K. Tittel. Performance evaluation of a near infrared QEPAS based ethylene sensor[J]. Appl. Phys. B, 2009, 95(4): 813~824

【6】K. Liu, J. Li, L. Wang et al.. Trace gas sensor based on quartz tuning fork enhanced laser photoacoustic spectroscopy[J]. Appl. Phys. B, 2009, 94(3): 527~533

【7】A. A. Kosterev, Y. A. Bakhirkin, F. K. Tittel et al.. QEPAS methane sensor performance for humidified gases[J]. Appl. Phys. B, 2008, 92(1): 103~109

【8】V. Zeninari, B. Parvitte, D. Courtois et al.. Measurements of air and noble-gas broadening and shift coefficients of the methane R3 triplet of the 2ν3 band[J]. Appl. Phys. B, 2001, 72(8): 953~959

【9】S. Schilt, J. P. Besson, L. Thévenaz. Near-infrared laser photoacoustic detection of methane: the impact of molecular relaxation[J]. Appl. Phys. B, 2006, 82(2): 319~328

【10】S. Schilt. Impact of water vapor on 1.51 μm ammonia absorption features used in trace gas sensing applications[J]. Appl. Phys. B, 2010, 100(2): 349~359

【11】A. A. Kosterev, F. K. Tittel, D. V. Serebryakor et al.. Applications of quartz tuning forks in spectroscopic gas sensing[J]. Rev. Sci. Instrum., 2005, 76(4): 043105

【12】K. Liu, X. Guo, H. Yi et al.. Off-beam quartz-enhanced photoacoustic spectroscopy[J]. Opt. Lett., 2009, 34(10): 1594~1596

【13】L. Dong, A. A. Kosterev, D. Thomazy et al.. QEPAS spectrophones: design, optimization, and performance[J]. Appl. Phys. B, 2010, 100(3): 627~635

【14】M. Christen. Air and gas damping of quartz tuning forks[J]. Sensors and Actuators, 1984, 4: 555~564

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF