中国激光, 2012, 39 (7): 0703006, 网络出版: 2012-06-04   

Si/Glass激光键合的仿真及实验研究

Numerical and Experimental Investigation of Laser Bonding Silicon and Glass
作者单位
1 中国科学院上海微系统与信息技术研究所微系统技术重点实验室, 上海 200050
2 中国科学院研究生院, 北京 100049
摘要
对Si/Glass激光键合进行了有限元仿真,自主设计激光键合系统并进行了Si/Glass激光键合实验研究、测试与表征。以Si/Glass激光键合的二维传热解析模型为理论基础,应用有限元软件ANSYS仿真了激光功率20~48 W时激光键合的三维温度场、键合熔融深度,并预测键合阈值功率为28 W。自主设计激光键合系统及实验方案,采用光斑直径150 μm、功率30 W的NdYAG连续激光实现了Si/Glass的良好激光键合。测试结果表明,激光键合强度最高为阳极键合的5.2倍,激光键合腔体气密性测试泄漏率平均值约9.29×10-9 Pa·m3/s,与阳极键合处于同一数量级。采用能谱分析(EDS)线扫描Si/Glass激光键合的界面材料成分,发现键合界面形成过渡层,激光功率30 W时过渡层厚度9 μm,与仿真结果吻合。
Abstract
This paper investigates laser bonding of silicon and Pyrex7740 glass by finite element method (FEM) simulation, self-design of apparatus and experimental research, test and characterization of bonding results. Based on a theoretical heat transfer two-dimensional (2D) model, a three-dimensional (3D) numerical simulation of laser bonding silicon and glass with laser power 20~48 W is conducted using ANSYS FEM softwave. Simulation results include temperature field and melted bonding depth which predicts the bonding threshold power is 28 W. A laser bonding apparatus with laser spot diameter of 150 μm and laser power of 30 W is designed to achieve good bonding. Shear force test shows that the bonding strength is 5.2 times of that of anodic bonding, while helium leak test on hermeticity of bonding samples observes average leakage rate of about 9.29×10-9 Pa·m3/s, which is the same order of magnitude as anodic bonding. From energy dispersive spectroscopy (EDS) line scanning laser bonded Si/glass interface cross section, the thickness of transition layer is 9 μm under 30 W laser, which agrees with the simulation results.

张志强, 徐静, 李绍良, 吴亚明. Si/Glass激光键合的仿真及实验研究[J]. 中国激光, 2012, 39(7): 0703006. Zhang Zhiqiang, Xu Jing, Li Shaoliang, Wu Yaming. Numerical and Experimental Investigation of Laser Bonding Silicon and Glass[J]. Chinese Journal of Lasers, 2012, 39(7): 0703006.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!