首页 > 论文 > 中国激光 > 39卷 > 7期(pp:702009--1)

基于数字反馈控制的Nd:YAG激光器频率稳定技术

Nd:YAG Laser Frequency Stabilization Technology Based on Digital Feedback Control

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

频率稳定的激光器在精密计量、高分辨率光谱等许多领域具有重要的应用。使用KTP晶体将Nd:YAG激光器输出的激光(1064 nm)倍频到532 nm,采用波长调制吸收光谱技术获得吸收峰的一次谐波信号作为鉴频信号,并基于数字比例积分微分(PID)反馈控制技术,把倍频后的频率稳定在碘分子B-X态(32-0)带的R(56)吸收峰上,在1 h的连续测量时间内,频率漂移幅度小于2 MHz,远小于多普勒受限的光谱线宽,频率稳定度达到了10-9量级,整套系统可以实现长时间连续工作。使用的数字PID稳频方案,可以有效抑制激光的长期频率漂移,具有方案简单、易于实现的优点,同时显著降低了较大幅度随机噪声对系统稳定性的影响。

Abstract

Frequency stabilized lasers are very important in many fields such as precision metrology and high resolution spectroscopy. A Nd:YAG laser (1064 nm) frequency stabilization scheme is reported. In this scheme, the laser frequency is doubled and stabilized at the R(56) absorption line of (32-0) band in the B-X system of molecular iodine based on digital proportion-integration-differentiation (PID) technique. The frequency stability reaches 10-9 and the frequency drift is less than 2 MHz in 1 h, which is far less than the Doppler-limited molecular absorption linewidth. This scheme can suppress the laser frequency drift effectively and minimize the large-amplitude random noise. It is proved simple and easy to implement.

广告组5 - 光束分析仪
补充资料

中图分类号:TN248.1+3

DOI:10.3788/cjl201239.0702009

所属栏目:激光物理

责任编辑:宋梅梅  信息反馈

基金项目:国家自然科学基金(41175036)与中国科学院大气成分与光学重点实验室开放基金资助课题。

收稿日期:2012-02-15

修改稿日期:2012-04-06

网络出版日期:--

作者单位    点击查看

贺志刚:中国科学院安徽光学精密机械研究所大气成分与光学重点实验室, 安徽 合肥 230031中国科学院安徽光学精密机械研究所大气物理化学研究室, 安徽 合肥 230031
邓伦华:华东师范大学精密光谱科学与技术国家重点实验室, 上海 200062
王贵师:中国科学院安徽光学精密机械研究所大气成分与光学重点实验室, 安徽 合肥 230031中国科学院安徽光学精密机械研究所大气物理化学研究室, 安徽 合肥 230031
汪磊:中国科学院安徽光学精密机械研究所大气成分与光学重点实验室, 安徽 合肥 230031中国科学院安徽光学精密机械研究所大气物理化学研究室, 安徽 合肥 230031
高晓明:中国科学院安徽光学精密机械研究所大气成分与光学重点实验室, 安徽 合肥 230031中国科学院安徽光学精密机械研究所大气物理化学研究室, 安徽 合肥 230031

联系人作者:贺志刚(zhiganghe@yahoo.com.cn)

备注:贺志刚(1986—),男,硕士研究生,主要从事激光稳频方面的研究。

【1】G. Galzerano, C. Svelto, E. Bava et al.. High-frequency-stability diode-pumped Nd:YAG lasers with the FM sidebands method and Doppler-free iodine lines at 532 nm[J]. Appl. Opt., 1999, 38(33): 6962~6966

【2】N. Ohmae, S. Moriwaki, N. Mio et al.. Wideband and high-gain frequency stabilization of a 100-W injection-locked Nd:YAG laser for second-generation gravitational wave detectors[J]. Rev. Sci. Instrum., 2010, 81(7): 073105

【3】M. L. Eickhoff, J. L. Hall. Optical frequency standard at 532 nm[J]. IEEE Trans. Instrumentation and Measurement, 1995, 44(2): 155~158

【4】L. G. Kazovsky. Performance analysis and laser linewidth requirements for optical PSK heterodyne communications-systems[J]. J. Lightwave Technology, 1986, 4(4): 415~425

【5】A. Arie, R. L. Byer. Frequency stabilization of the 1064-nm Nd-YAG lasers to Doppler-broadened lines of iodine[J]. Appl. Opt., 1993, 32(36): 7382~7386

【6】Zhao Nanjing, Liu Wenqing, Zhang Yujun et al.. The fluorescence emission of water at upconversion of frequency by laser induced fluorescence[J]. Spectroscopy and Spectral Analysis, 2006, 26(6): 980~982
赵南京, 刘文清, 张玉钧 等. 激光诱导水体频率上转换的荧光发射[J]. 光谱学与光谱分析, 2006, 26(6): 980~982

【7】Zhang Bin, Long Xingwu, Liu Jianping et al.. Lamb-dip frequency-stabilized He-Ne laser with an integrated cavity made of zerodur (Ⅰ): structure and techniques[J]. Acta Optica Sinica, 2011, 31(8): 0814005
张斌, 龙兴武, 刘贱平 等. 微晶玻璃腔体一体化兰姆凹陷稳频He-Ne激光器(Ⅰ): 结构与工艺[J]. 光学学报, 2011, 31(8): 0814005

【8】T. Day, E. K. Gustafson, R. L. Byer. Sub-hertz relative frequency stabilization of 2-diode laser-pumped Nd-YAG lasers locked to a Fabry-Perot-interferometer[J]. IEEE J. Quantum Electron., 1992, 28(4): 1106~1117

【9】M. Bregant, G. Cantatore, F. Della Valle et al.. Frequency locking to a high-finesse Fabry-Perot cavity of a frequency doubled Nd:YAG laser used as the optical phase modulator[J]. Rev. Sci. Instrum., 2002, 73(12): 4142~4144

【10】Yuan Dandan, Hu Shuling, Liu Honghai et al.. Research of laser frequency stabilization[J]. Laser & Optoelectronics Progress, 2011, 48(8): 081401
苑丹丹, 胡姝玲, 刘宏海 等. 激光器稳频技术研究[J]. 激光与光电子学进展, 2011, 48(8): 081401

【11】M. Musha, T. Kanaya, K. Nakagawa et al.. The short- and long-term frequency stabilization of an injection-locked Nd:YAG laser in reference to a Fabry-Perot cavity and an iodine saturated absorption line[J]. Opt. Commun., 2000, 183(1-4): 165~173

【12】Meng Tengfei, Wu Yuelong, Ji Zhonghua et al.. Frequency stabilized diode laser based on cesium molecular saturated absorption spectroscopy[J]. Chinese J. Lasers, 2010, 37(5): 1182~1185
孟腾飞, 武跃龙, 姬中华 等. 铯分子饱和吸收谱的半导体激光器稳频[J]. 中国激光, 2010, 37(5): 1182~1185

【13】T. J. Quinn. Practical realization of the definition of the metre (1997)[J]. Metrologia, 1999, 36(3): 211~244

【14】R. X. Guo, F. L. Hong, A. Onae et al.. Frequency stabilization of a 1319-nm Nd:YAG laser by saturation spectroscopy of molecular iodine[J]. Opt. Lett., 2004, 29(15): 1733~1735

【15】L. S. Ma, L. Hollberg, J. H. Shirley et al.. Modulation transfer spectroscopy for stablizing laser[P]. U.S. Patent, 4590597, 1986-5-20

【16】Zang Erjun, Cao Jianping, Li Ye et al.. 532 nm iodine molecular optical frequency standards[J]. Chinese J. Lasers, 2007, 34(2): 203~208
臧二军, 曹建平, 李烨 等. 532 nm碘分子光频标[J]. 中国激光, 2007, 34(2): 203~208

【17】W. P. Deng, B. Gao, C. F. Cheng et al.. A frequency-stabilized difference frequency generation laser spectrometer for precise line profile studies in the midinfrared[J]. Rev. Sci. Instrum., 2008, 79(12): 123101

【18】K. Nyholm, M. Merimaa, T. Ahola et al.. Frequency stabilization of a diode-pumped Nd:YAG laser at 532 nm to iodine by using third-harmonic technique[J]. IEEE Trans. Instrumentation and Measurement, 2003, 52(2): 284~287

【19】J. Ye, L. Robertsson, S. Picard et al.. Absolute frequency atlas of molecular 1-2 lines at 532 nm[J]. IEEE Trans. Instrumentation and Measurement, 1999, 48(2): 544~549

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF