光学学报, 2012, 32 (8): 0814002, 网络出版: 2012-06-07  

高重复频率飞秒脉冲激光诱导钼酸镝玻璃表面析出β′-Dy2(MoO4)3和α-MoO3晶体

β′-Dy2(MoO4)3 and α-MoO3 Crystallization Induced by High Repetition Rate Femtosecond Laser Irradiation on the Surface of Dysprosium Molybdate Glass
作者单位
上海大学理学院物理系, 上海 200444
摘要
高重复频率飞秒脉冲激光辐照钼酸镝玻璃表面后,通过显微拉曼测试,发现在辐照区域内形成了含有MoO4四面体结构的β′-Dy2(MoO4)3晶体和含有MoO6八面体结构的α-MoO3晶体。通过电子能谱(EDS)测量辐照前后样品中钼(Mo)元素的含量,发现在辐照中心位置形成α-MoO3晶体相的区域内出现了明显的Mo元素缺失现象,表明了在高温场作用下,微爆现象引起了材料中心密度的降低。此外,随着辐照时间的增加辐照中心位置还出现了由Dy2(MoO4)3相向MoO3晶体α相的相变。这说明随着激光作用程度的加剧,中心区域Mo元素浓度降低,使得钼氧结构由MoO4四面体向MoO6八面体转变,导致在Mo元素浓度较低的区域更容易形成八面体结构的α-MoO3。
Abstract
A high repetition rate femtosecond laser is used to irradiate the surface of dysprosium molybdate glass, and then two kinds of crystals, the β′-Dy2(MoO4)3 crystal with MoO4 structure cell and the α-MoO3 crystal with MoO6 structure cell, could be identified in the modified regions through micro-Raman spectra analysis. Energy dispersive spectra (EDS) further show that concentration of Mo element would be reduced in the center of the irradiated region as well as the α-MoO3 crystallization region, which indicates that laser induced microexplosion causes a rarefaction center under high temperature and pressure shockwave. With the irradiation time increasing, a phase transformation from β′-Dy2(MoO4)3 to α-MoO3 occurs. It implies that the concentraion reducing of Mo element due to femtosecond laser continuously irradiating could effectively promote the transformation of Mo-O structure from MoO4 to MoO6, and further for the α-MoO3 crystallization in lower Mo elements region.

杜莺莺, 马洪良, 戴晔, 韩咏梅, 钟敏建. 高重复频率飞秒脉冲激光诱导钼酸镝玻璃表面析出β′-Dy2(MoO4)3和α-MoO3晶体[J]. 光学学报, 2012, 32(8): 0814002. Du Yingying, Ma Hongliang, Dai Ye, Han Yongmei, Zhong Minjian. β′-Dy2(MoO4)3 and α-MoO3 Crystallization Induced by High Repetition Rate Femtosecond Laser Irradiation on the Surface of Dysprosium Molybdate Glass[J]. Acta Optica Sinica, 2012, 32(8): 0814002.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!