首页 > 论文 > 激光技术 > 36卷 > 4期(pp:480-484)

八边形低色散高非线性光子晶体光纤的设计

Design of a novel octagonal photonic crystal fiber with flat dispersion and high nonlinearity

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了得到平坦色散高非线性的光子晶体光纤,设计了一种用于新颖的八边形三包层光子晶体光纤结构,采用多极法研究了空气孔直径、孔间距对色散和非线性的影响。结果表明,色散值和非线性系数随着内层空气孔直径d1的增大整体逐渐减小;随着第3圈空气孔直径d3的逐渐增大,色散值逐渐增大,但非线性基本保持不变;第2圈及外圈空气孔直径的变化对色散及非线性的影响较小。通过合理调节结构参量,在1.46μm~1.73μm近270nm波段内,色散绝对值在0.5ps/ (km·nm)范围内波动;在1.5μm~1.65μm近150nm范围内的非线性系数值介于42.5W-1·km-1~50W-1·km-1。这一结果对设计特定功能的光子晶体光纤提供了理论参考。

Abstract

In order to obtain a new flattened dispersion photonic crystal fiber with high nonlinearity, a novel octagonal photonic crystal fiber(O-PCF) with three-cladding structure was designed. The effect of the hole size and hole space on the nonlinearity and dispersion of the PCF was analyzed by means of the multi-pole method. The result shows that the dispersion and the nonlinearity coefficient of O-PCF decrease with the increasing of the diameter of inner air hole. With the increasing of the diameter of the third air hole, the dispersion increases. Meanwhile, the nonlinearity coefficient almost remains constant. The dispersion and nonlinearity coefficient is affected little by the diameter of the second layer and peripheral air hole. By optimizing the diameters of the O-PCF holes and the hole pitch, an O-PCF with high flattened dispersion and nonlinearity was achieved. At the wavelength range of 1.46μm~1.73μm, the dispersion coefficient is merely changed within ±0.5ps/(km·nm), and the nonlinearity coefficient is merely changed from 42.5W-1·km-1 to 50W-1·km-1 at 1.5μm to 1.65μm. These results offer theoretical references for designing the photonic crystal fiber with some specific function.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN253;TN929.11

DOI:10.3969/j.issn.1001-3806.2012.04.012

所属栏目:激光材料与光学元件

收稿日期:2011-10-08

修改稿日期:2011-10-20

网络出版日期:--

作者单位    点击查看

陈娟:新疆大学 信息科学与工程学院,乌鲁木齐 830046
葛文萍:新疆大学 信息科学与工程学院,乌鲁木齐 830046
王晓薇:新疆大学 信息科学与工程学院,乌鲁木齐 830046

联系人作者:葛文萍(wenpingge@sohu.com)

备注:陈娟(1984-),女,硕士研究生,主要从事光纤通信方面的研究。

【1】BIRKS T A, KNIGHT J C, RUSSELL P S. Endlessly single mode photonic crystal fibre[J]. Optics Letters,1997,22(11):961-963.

【2】KNIGHT J C, ARRIAGE J, BIRKS T A, et al. Anomalous dispersion in photonic crystal fiber[J]. IEEE Photonics Technology Letter,2000,12(7):807-809.

【3】GE W P, LIN A X, GUINTRANG C, et al. Determination ofdispersion and nonlinear coefficients of photonic crystal fibers by degenerate FWM method[C]//Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies. San Jose CA, USA: Optical Society of America,2010:1-3.

【4】MARTIN-LOPEZ S, ABRARDI L, CORRDERA P, et al. Spectrally-bounded continuous-wave supercontinuum generation in a fiber with two zero-dispersion wavelengths[J]. Optics Express,2008,16(9):6745-6755.

【5】CHIANG J Sh,WU Z L. Analysis of propagation characteristics for an octagonal photonic crystal fiber(O-PCF)[J].Optics Communications,2006,258(2):170-176.

【6】SUN T L, LI Q H, LIU J H, et al. Study on photonic crystal fibers with high nonlinearity and flattened dispersion[J]. Laser Techonolgy,2008,32(3):330-333(in Chinese).

【7】HOU Y, ZHOU G Y, HOU L T, et al. Analysis of dispersion properties of octagonal structural photonic crystal fiber with double cladding[J]. Chinese Journal of Lasers,2010,37(4):1068-1072(in Chinese).

【8】YAN H F, YU Zh Y, TIAN H D, et al. Investigation on propagation and nonlinearity of an octagonal photonic crystal fiber[J].Acta Physica Sinica,2010,59(5):3273-3277(in Chinese).

【9】JIANG L H, HOU L T, ZOU J H, et al. Design of photonic crystal fiber with fiat dispersion and low confinement loss[J]. Laser Techonolgy,2011, 35(1):61-64(in Chinese).

【10】WHITE T P, KUHLMEY B T, McPHEDRAN R C, et al. Multipole method for microstructured optical fibers. I .Formulation[J]. Journal of the Optical Society of America,2002,B19(10):2322-2330.

【11】WU M, LIU H R, HUANG D X. Dispersion property in highly nonlinear photonic crystal fiber[J]. Acta Optica Sinica,2008,28(3):539-542(in Chinese).

【12】KATO T,SUETSUGU Y,NISHIMURU M. Estimation of nonlinear refractive index in various silica-based glasses for optical fibers[J]. Optics Letters,1995,20(22):2279-2281.

【13】MORTENSEN A N. Effective area of photonic crystal fibers[J]. Optics Express,2002,10(7):341-348.

【14】TSE V L M, HORAK P F, POLETTI F, et al. Supercontinuum generation at 1.06μm in holey fibers with dispersion flattened profiles[J]. Optics Express,2006,14(10):4445-4451.

【15】SAITOH K,KOSHIBA M. Highly nonlinear dispersion-nattened photonic crystal fibers for supercontinuum generation in a telecommunication window[J]. Optics Express,2004,12(10):2027-2032.

引用该论文

CHEN Juan,GE Weng-ping,WANG Xiao-wei. Design of a novel octagonal photonic crystal fiber with flat dispersion and high nonlinearity[J]. Laser Technology, 2012, 36(4): 480-484

陈娟,葛文萍,王晓薇. 八边形低色散高非线性光子晶体光纤的设计[J]. 激光技术, 2012, 36(4): 480-484

被引情况

【1】王丹,郑义. 一种超宽带低色散多孔光纤的数值研究. 光学学报, 2013, 33(8): 806005--1

【2】帕孜来提,阿不都热苏力. 禁带理论应用于溶液浓度检测的研究. 光学与光电技术, 2014, 12(6): 84-87

【3】阿卜杜外力江·伊米提,阿不都热苏力·阿不都热西提. 光子晶体液体浓度传感器. 光学技术, 2019, 45(1): 58-62

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF