Frontiers of Optoelectronics, 2011, 4 (1): 24, 网络出版: 2012-09-21  

Dye-sensitized solar cells based on ZnO nanotetrapods

Dye-sensitized solar cells based on ZnO nanotetrapods
作者单位
1 Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China
2 Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
摘要
Abstract
In this paper, we reviewed recent systematic studies of using ZnO nanotetrapods for photoanodes of dye-sensitized solar cells (DSSCs) in our group. First, the efficiency of power conversion was obtained by more than 3.27% by changes of conditions of dye loading and film thickness of ZnO nanotetrapod. Short-circuit photocurrent densities (Jsc) increased with the film thickness, Jsc would not be saturation even the film thickness was greater than 35 μm. The photoanode architecture had been charactered by good crystallinity, network forming ability, and limited electron-hopping interjunctions. Next, DSSCs with high efficiency was devised by infiltrating SnO2 nanoparticles into the ZnO nanotetrapods photoanodes. Due to material advantages of both constituents described as above, the composite photoanodes exhibited extremely large roughness factors (RFs), good charge collection, and tunable light scattering properties. By varying the composition of the composite photoanodes, we had achieved an efficiency of 6.31% by striking a balance between high efficiency of charge collection for SnO2 nanoparticles rich films and high light scattering ability for ZnO nanotetrapods rich films. An ultrathin layer of ZnO was found to form spontaneously on the SnO2 nanoparticles, which primarily was responsible for enhancing open-circuit photovoltage (Voc). We also identified that recombination in SnO2/ZnO composite films was mainly determined by ZnO shell condition on SnO2, whereas electron transport was greatly influenced by the morphologies and sizes of ZnO crystalline additives. Finally, we applied the composite photoanodes of SnO2 nanoparticles/ZnO nanotetrapods to flexible DSSCs by low temperature technique of “acetic acid gelation-mechanical press-ammonia activation.” The efficiency has been achieved by 4.91% on ITO-coated polyethylenenaphtalate substrate. The formation of a thin ZnO shell on SnO2 nanoparticles, after ammonia activation, was also found to be critical to boosting Voc and to improving inter-particles contacts. Mechanical press, apart from enhancing film durability, also significantly improved charge collection. ZnO nanotetrapods had been demonstrated to be a better additive than ZnO particles for the improvement of charge collection in SnO2/ZnO composite photoanodes regardless of whether they were calcined.

Wei CHEN, Shihe YANG. Dye-sensitized solar cells based on ZnO nanotetrapods[J]. Frontiers of Optoelectronics, 2011, 4(1): 24. Wei CHEN, Shihe YANG. Dye-sensitized solar cells based on ZnO nanotetrapods[J]. Frontiers of Optoelectronics, 2011, 4(1): 24.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!