Frontiers of Optoelectronics, 2011, 4 (1): 65, 网络出版: 2012-09-21  

Enhanced electron injection/transportation by surface states increment in mesoporous TiO2 dye-sensitized solar cells

Enhanced electron injection/transportation by surface states increment in mesoporous TiO2 dye-sensitized solar cells
作者单位
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2 College of Chemistry, Jilin University, Changchun 130023, China
摘要
Abstract
A strategy of surface modification to the mesoporous TiO2 photoanode with hydrochloric acid treatment was used in this study, and it was found that short circuit current and photovoltaic efficiency of dyesensitized solar cells (DSSCs) were increased by 5.5% and 8.9% respectively. The improvement was attributed to the reduced impedances in the TiO2 film and at the TiO2/dye/electrolyte interface. It was showed that the increased surface electronic states could remarkably prolong electron lifetime, which was responsible for the reduction of impedances. Under these quasi-continuous states in mesoporous structure, the electron injection/transportation can be notably facilitated, which will be beneficial for the DSSC performance.

Minghui DENG, Shuqing HUANG, Zhexun YU, Dongmei LI, Yanhong LUO, Yubai BAI, Qingbo MENG. Enhanced electron injection/transportation by surface states increment in mesoporous TiO2 dye-sensitized solar cells[J]. Frontiers of Optoelectronics, 2011, 4(1): 65. Minghui DENG, Shuqing HUANG, Zhexun YU, Dongmei LI, Yanhong LUO, Yubai BAI, Qingbo MENG. Enhanced electron injection/transportation by surface states increment in mesoporous TiO2 dye-sensitized solar cells[J]. Frontiers of Optoelectronics, 2011, 4(1): 65.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!